國 立 清 華 大 學 命 題 紙

- 1. (15 points) Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and periodic with period of 2π . For $n \in \mathbb{N}$, let $f_n(x) = f\left(x + \frac{1}{n}\right)$ for $x \in \mathbb{R}$. Show that $\{f_n\}$ converges uniformly on \mathbb{R} to f.
- 2. (15 points) Find the volume of the largest rectangular box that can be inscribed in the ellipsoidal region

$$\left\{(x,y,z)\in\mathbb{R}^3\Big|\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq 1\right\}$$

where a > 0, b > 0, c > 0.

3. (15 points) Find all function $\sigma(x)$ continuous for x>0, and positive real numbers β for which

$$e^{x} = 2 + \int_{\beta}^{x^{2}} \sigma(t)dt.$$

4. Suppose that f(x) is a real, continuously differentiable function on [a,b] with f(a) = f(b) = 0 and

$$\int_a^b f^2(x)dx = 10$$

Show shat

- (a) $\int_{a}^{b} x f(x) f'(x) dx = -5$ (7 points)
- (b) $\int_a^b (f'(x))^2 dx \cdot \int_a^b x^2 f''(x) dx \ge 25$. (8 points)
- 5. (15 points) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying f(x+y) = f(x) + f(y), $\forall x, y \in \mathbb{R}$. Show that f(x) = xf(1), $\forall x \in \mathbb{R}$.

國立清華大學命題紙

八十五學年度 <u>數學</u>系(所)<u>紀特數學</u>組碩士班研究生入學者試 科目 高等(以積分 科號 0/0/共之頁第2頁 *請在試卷【答案卷】內作答

- 6. (15 points) Suppose that $a_n > 0$, $\forall n \geq 1$ and $\sum_{n=1}^{\infty} a_n$ converges. Set $r_n = \sum_{k=n}^{\infty} a_k$. Show that $\sum_{n=1}^{\infty} \frac{a_n}{r_n}$ diverges.
- 7. Let $S \subseteq \mathbb{R}^n$ be open and let $f: S \to \mathbb{R}^m$ be differentiable. Suppose that S contains the points a, b and the line segment joining them.
 - (a) Show that there exists a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$ such that f(b) f(a) = L(b a). (8 points)
 - (b) Must there be a point c on the line segment joining a and b such that L = Df(c)? Justify your answer. (7 points)
- 8. (15 points) Let $S^2=\{(x,y,z)\in\mathbb{R}^3|x^2+y^2+z^2=1\}$. Evaluate the integral $\int_{S^2}(x^4+y^4+z^4)d\sigma,$

where $d\sigma$ is the surface area element in S^2 .