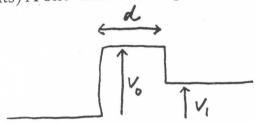


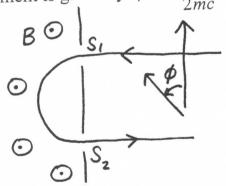
1 (15 points) The wave function of a particle trapped in an infinite square well potential of width 2a is found to be

$$\psi(x) = \begin{cases} C\left(\cos\frac{\pi x}{2a} + \sin\frac{3\pi x}{a} + \frac{1}{4}\cos\frac{3\pi x}{2a}\right), & \text{for } x \in [-a, a] \\ 0, & \text{elsewhere} \end{cases}$$


- a) Calculate the coefficient C,
- b) If a measurement of the total energy is made, what are the possible results of such a measurement, and what is the probability to measure each of them?
- c) If I adiabatically widen the well to $x \in [-2a, 2a]$, what will be the new wave function after time $t \neq 0$?
- 2 (15 points) Give numerical values and appropriate units for:
 - a) Planck's constant,
 - b) Fine structure constant,,
 - c) Classical radius of electron,
 - d) Spin magnetic moment of proton,
 - e) Velocity of electron in the first Bohr orbit.

Express b) and c) in terms of the fundamental constants e, h, m_e , and c.

3 (25 points) Calculate the shift in energy of the 1s state of hydrogen which one obtains if the proton is assumed to be a uniformly charged spherical shell of radius 10⁻¹³ cm rather than a point charge. Use the first-order perturbation theory.


國立清華大學命題紙 95學年度_切理 系(所)______組碩士班入學考試 科目近代物理_科目代碼_04·01 共 3 頁第 2 頁 *請在【答案卷卡】內作答

4 (15 points) A one-dimensional potential barrier is of the shape

Find the transmission coefficient for particles of mass m coming from the left, with energy $E(V_1 < E < V_0)$.

15 (15 points) Electrons enter a region of uniform magnetic field B through a slit, S_1 and leave, after one semicircular turn, through slit S_2 . As they enter S_1 , their spins are pointed upwards $(\phi = 0)$ as shown in the diagram. Electrons have a g-factor of $g = 2 + \alpha/\pi$, and the magnetic moment is given by $\vec{\mu} = -\frac{e}{2mc}g\vec{s}$.

- a) What is their spin precession frequency?
- b) What is their cyclotron frequency?
- c) What is the angle ϕ , which the electron spins make with the initial spin direction, when they exit through slit S_2 ?

2	或	立	清	華	大		學	命	-	題	紙	
	95 學年度	は勿	理		(月	斤)_				且碩士班入	學考試	
科目	近代生	勿理	科	目代碼 04	01共	3	頁第	3 3	頁 *	請在【答	案卷卡】	內作答

- 6 (10 points) Determine the eigenvalues and normalized eigenvectors of this matrix $\begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$.
- 7 (5 points) What is the value of the matrix element $\langle \ell', m' | [\hat{L}_+, \hat{L}_-] \ell, m \rangle$?