國立清華大學命題紙

96 學年度 計量財務金融學系 (所) 乙組 碩士班入學考試

科目 基礎數學 (微積分、線性代數) 科目代碼 5304 共 2 頁第 1 頁 *請在【答案卷卡】內作答

Total Points: 100.

1. (10 %) Given $\varphi_n(u) = \left(\frac{1}{2}e^{u/\sqrt{n}} + \frac{1}{2}e^{-u/\sqrt{n}}\right)^n$ and $\varphi(u) = e^{\frac{1}{2}u^2}$ with $u \in \Re$ (the set of all real numbers) and n > 0, prove that for any $u \in \Re$,

$$\lim_{n\to\infty}\varphi_n(u)=\varphi(u).$$

2. (15 %) Given a real number M > 0, prove that

$$\int_{M}^{\infty} e^{-x^{2}/2} dx \le \sqrt{\frac{\pi}{2}} e^{-\frac{M^{2}}{2}}.$$

(Hint: you may double the left hand side and consider a new integral domain $\{(x,y)|x,y\in[M,\infty)\}\subseteq\{(x,y)|x^2+y^2\geq M^2,x\geq 0,y\geq 0.\}$)

3. Given the following one dimensional ordinary differential equation: for $x \ge 0$

$$\begin{cases} \frac{dy}{dx} = \alpha(m - y(x)) \\ y(0) = y_0 \end{cases}$$

where α, m , and y_0 are arbitrary real numbers.

- (a) (7 %) Solve y(x). (Hint: let z(x) = m y(x).)
- (b) (8 %) Find all conditions such that the limiting solution of y(x) is equal to m as $x \to \infty$.
- 4. (15 %) Let $f(x,y) = xy^2 + x + 2y$ be the cost function and g(x,y) = xy 1 be the constraint function. Find the minimum and maximum, if they exist, of the cost function subject to the constraint g(x,y) = 0 with x > 0. In the case that they do exist, identify all of the points (x,y) at which these values are attained.
- 5. Given a matrix $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$ and a vector $b = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$,
 - (a) (5 %) Is Ax = b solvable? Explain your result.
 - (b) (5 %) Find the least squares solution of Ax = b. (Denote this solution by \hat{x} .)

國立清華大學命題紙

96 學年度 計量財務金融學系 (所) 乙組 碩士班入學考試

科目 基礎數學(微積分、線性代數) 科目代碼 5304 共 2 頁第 2 頁 *請在【答案卷卡】內作答

- (c) (5 %) Show that $e = b A\hat{x}$ is orthogonal to the column space of A.
- (d) (5 %) Give a geometric interpretation of $A\hat{x}$.
- 6. Given a Markov matrix $A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$,
 - (a) (4 %) Find the eigenvalues of A.

(b) (9 %) If
$$A^{\infty} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $x_1 + x_2 = 1$, Find $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

7. True or False

- (a) (3 %) If the matrix A^T is invertible if and only if A is invertible.
- (b) (3 %) If A^TA is invertible, then A is invertible.
- (c) (3 %) Let $f \geq g \geq 0$ be real-valued and continuous functions defined on [0,1]. If $\int_0^1 f(x)dx = 0$, then g(x) = 0, $\forall x \in [0,1]$.
- (d) (3 %) If $\sum_{n=0}^{\infty} a_i(n)$ is divergent and each a_i is differentiable, then $\sum_{n=0}^{\infty} a'_i(n)$ is divergent.