科目代碼 9902 共 5 頁第 1 頁 *請在試卷【答案卷】內作答

1. $(5\%)\mathcal{L}$ represents the Laplace Transform operator.

$$\mathcal{L}\left(t\cos(2t)\right) = (\underline{\quad (1)\quad -4)\cdot \quad (2)}$$

Please find (1) and (2) from the following. Both have to be correct to receive full grade.

(A)
$$s^2$$
; (B) s^{-2} ; (C) $(s-1)$; (D) $(s-1)^2$; (E) $(s-1)^{-2}$; (F) (s^2-1) ; (G) (s^2-2) ; (H) $(s-2)^2$; (I) $(s-2)^{-2}$; (J) $(s^2+4)^{-2}$; (K) $(s^2+4)^2$.

2. $(5\%)\mathcal{L}^{-1}$ represents the inverse Laplace Transform operator.

$$\mathcal{L}^{-1}\left(\frac{1}{(s^2+\omega^2)^2}\right) = \underline{\qquad (1) \qquad} \left(\sin(\omega t) - \underline{\qquad (2) \qquad} \cdot \cos(\omega t)\right)$$

Please find (1) and (2) from the following. Both have to be correct to receive full grade.

(A)2
$$\omega$$
; (B) $\frac{1}{2\omega}$; (C)2 ω^2 ; (D) $\frac{1}{2\omega^2}$; (E)2 ω^3 ; (F) $\frac{1}{2\omega^3}$; (G) ωt ; (H)(ωt)²; (I)(ωt)³; (J)2 $\omega^2 t$; (K)2 $\omega^2 t$.

3. (5%)'*' represents the convolution operator.

$$(e^{-t} - e^{-2t}) * e^{-t} = (1) + (t-1) (2)$$

Please find (1) and (2) from the following. Both have to be correct to receive full grade.

$$\begin{array}{l} ({\rm A})e^t; \ ({\rm B})e^{(t-1)}; \ ({\rm C})e^{-t}; \ ({\rm D})e^{-(t-1)}; \ ({\rm E})e^{-2t}; \ ({\rm F})e^{-2(t-1)}; \ ({\rm G})e^{2t}; \ ({\rm H})e^{2(t-1)}; \ ({\rm I})e^{-3t}; \ ({\rm J})e^{-3(t-1)}; \ ({\rm K})e^{3t}; \ ({\rm L})e^{3(t-1)}; \ ({\rm M})t; \ ({\rm N})(t-1); \ ({\rm O})\frac{1}{t-1}; \ ({\rm P})(t-1)^2; \ ({\rm Q})(t-1)^3. \end{array}$$

- 4. (5%)Please identify all the even functions in the following. Full grade will be given only if all answers are correct. (A) e^x ; (B) $e^{(x^2)}$; (C) $\sin(nx)$; (D) $x\sin(x)$; (E) $\frac{\cos(x)}{x}$; (F) $\ln(x)$; (G) $\sin(x^2)$; $(H)\sin^2(x)$.
- 5. (5%)Which of the following collections of vectors are linearly independent in \mathbb{R}^3 ? \mathbb{R}^3 represents a Euclidean vector space. $(A)(1,0,0)^T, (0,1,1)^T, (1,0,1)^T; (B)(1,0,0)^T, (0,1,1)^T, (1,0,1)^T, (1,2,3)^T; (C)(2,1,-2)^T, (3,2,-2)^T, (2,2,0)^T; (D)(2,1,-2)^T, (-2,-1,2)^T, (4,2,-4)^T; (E)(1,1,3)^T, (0,2,1)^T.$

科目____工程數學 A __科目代碼___9902 共 5 頁第 Z 頁 *請在試卷【答案卷】內作答

6. (7%) The standard 2nd-order mass-damper-spring system can be expressed by the differential equation $m\ddot{x} + b\dot{x} + kx = F(t)$, where x is the displacement of the proof mass, b is the damping coefficient, k is the spring constant, and F(t) is the externally The equation can be re-written $\ddot{x} + 2\xi\omega_n\dot{x} + \omega_n^2x = F(t)/m$, where ξ is the damping ratio and ω_n is the natural frequency defined as $\omega_n = \sqrt{\frac{k}{m}}$. Now that the applied force F(t) is a unit-step function u(t) and $0 < \xi < 1$. Determine the corresponding particular solution from the following answers (note: $\omega_d = \omega_n \sqrt{1 - \xi^2}$):

(1)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(\cos \omega_d t + \sin \omega_d t \right) \right]$$

(2)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(1 + \omega_n t \right) \right]$$

(3)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(\frac{1}{\sqrt{1 - \xi^2}} + \omega_n t \right) \right]$$

(4)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} - e^{-\xi \omega_d t} \right]$$

(5)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_d t} \right]$$

(6)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(\cos \omega_d t + \frac{\xi}{\sqrt{1 - \xi^2}} \sin \omega_d t \right) \right]$$

(7)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(\frac{1}{\sqrt{1 - \xi^2}} \cos \omega_d t + \sin \omega_d t \right) \right]$$

(8)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(\frac{\xi}{\sqrt{1 - \xi^2}} \cos \omega_d t + \sin \omega_d t \right) \right]$$

(9)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(c_1 \cos \omega_d t + c_2 \sin \omega_d t \right) \right], c_1 \text{ and } c_2 \text{ are arbitrary constants.}$$

(10)
$$x(t) = \frac{1}{k} \left[1 - e^{-\xi \omega_n t} \left(c_1 + c_2 \omega_n t \right) \right]$$
, c_1 and c_2 are arbitrary constants.

9902 共 5 頁第 3 頁 *請在試卷【答案卷】內作答

7. (6%) The differential equation axy'' + y' + y = 0 (0 < x < ∞ , a is an unknown constant) has two linear independent solutions expressed in power series:

$$y_1(x) = 1 - x + \frac{x^2}{8} - \frac{x^3}{168} + \frac{x^4}{6720} - \dots$$
, $y_2(x) = x^{2/3} - \frac{x^{5/3}}{5} + \frac{x^{8/3}}{80} - \frac{x^{11/3}}{2640} + \dots$

Please determine the value of a that leads to these two solutions. (1) a = -1 (2) a = 1(3) a = -2 (4) a = 2 (5) a = -3 (6) a = 3 (7) a = -4 (8) a = 4 (9) a = -1/2 (10) a = 1/2.

8. (7%) Determine the general solution of the differential equation $y' = y^2 - xy + 1$, which has a particular solution Y(x) = x by inspection (note: C is an arbitrary constant).

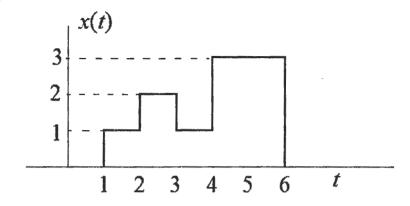
(1)
$$y(x) = x + \frac{2e^{-x^2/2}}{C - 3\int e^{x^2/2} dx}$$
 (2) $y(x) = x + \frac{e^{x^2/2}}{C - \int e^{x^2/2} dx}$ (3)

$$y(x) = x + \frac{e^{-x^2/2}}{C - \int e^{-x^2/2} dx}$$
(4) $y(x) = x + \frac{2e^{x^2/2}}{C + \int e^{-x^2/2} dx}$ (5) $y(x) = x - \frac{e^{-x^2/2}}{C - 2\int e^{x^2/2} dx}$

(6)
$$y(x) = x - \frac{e^x}{C - \int e^x dx}$$
 (7) $y(x) = x + \frac{2e^x}{C + \int e^{-x} dx}$ (8) $y(x) = x + \frac{2e^x}{C + 3\int e^{-x} dx}$

(9)
$$y(x) = x + \frac{e^{-x}}{C + \int e^{-x} dx}$$
 (10) $y(x) = x + \frac{2e^x}{C + 2\int e^{-x} dx}$.

9. (7%) Find the Fourier transform of the function x(t) shown below.



工程數學 A 科目代碼 9902 共 5 頁第 4 頁 *請在試卷【答案卷】內作答

10. (10%) Solve for u(x,t) that satisfies $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ and the following conditions u(0,t) = u(1,t) = 0 for all t $u(x,0) = \sum_{n=1}^{t} \frac{1}{n} \sin n\pi x , \frac{\partial u}{\partial t} \Big|_{t=0} = 0 \quad \text{for } 0 < x < 1$

You need to show how you derive your answer. Partial points will be deducted for not writing your derivation.

11. (4%) Find a scalar function f(x,y,z) such that $\nabla f = 6x\vec{i} + 2\vec{j} + 2z\vec{k}$. No need to write down the derivation. Just giving your answer is OK.

(12%) Then, choose an answer for each of the following integrals along the specified paths: (No need to write down the derivation. Just pick up the correct value for each integral.)

$$\int_{C} (6x\vec{i} + 2\vec{j} + 2z\vec{k}) \bullet d\vec{r} = (a) \ 0 \ (b) \ 2 \ (c) \ 2\pi \quad (d) \ 4\pi \quad (e) \ 4 \ (f) \ 6 \ (g) \ 2.5\pi \quad (h) \ 10$$
(i) none of the above
$$\int_{C} (6x\vec{i} + 2\vec{j} + 2z\vec{k}) \bullet d\vec{r} = (a) \ 0 \ (b) \ 2 \ (c) \ 2\pi \quad (d) \ 4\pi \quad (e) \ 4 \ (f) \ 6 \ (g) \ 2.5\pi \quad (h) \ 8$$

(i) none of the above The absolute value of $\oint_{R} (yz\vec{i} + 6xz^5\vec{j} - xy^2z\vec{k}) \cdot d\vec{r}$ is equal to (a) 0 (b) 2π (c) 3π

(d) 5π (e) 8π (f) 11π (g) 13π (h) π (i) none of the above

Here, C is the path from the point (0,0,0) to (1,1,1) following a straight-line segment. D is the path first from the point (0,0,0) to $(0,\frac{1}{2},0)$ following a straight-line segment, and then from $(0, \frac{1}{2}, 0)$ to (1,1,1) again following a straight-line segment.

E is the path along the circle: $x^2 + y^2 = 1$, z = 1.

工程數學 A 科目代碼 9902 共 5 頁第 5 頁 *請在試卷【答案卷】內作答

12. (12%)
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \text{ (a) } 0.4 \,\pi \text{ (b) } \pi \text{ (c) } 2 \,\pi \text{-4 (d) } 2.5 \,\pi \text{-5} \text{ (e) } 0.6 \,\pi \text{ (f) } 0.8 \,\pi$$
(g) $\pi \text{-2}$ (h) $0.5 \,\pi$ (i) none of the above. (You may use the residue theorem.)

- 13. (10%) Evaluate the integrals along the path C that is the counterclockwise circle with |z| = 3.
 - (a) $\int_{C} \frac{z^2 1}{z^2 + 1} e^z dz$
 - **(b)** $\oint_C \frac{\sinh 3z}{(z^2+1)^2} dz$