國立清華大學命題紙

- 1. (25%) Please mark 1A(a), 1A(b), ..., 1A(e), 1B(a), and 1B(b), respectively, in top of your answers.
- (1A) In a typical driver circuit as shown in Fig. 1, the zener diodes D_z are ideal with zener voltage V_z = 5.3 V and forward cut-in voltage V_γ = 0.7 V. The operational amplifier is ideal too. The BJTs, Q_N and Q_P , can be modeled by $|V_{BE(on)}|$ = 0.7 V. The power supply is V_{CC} = 15 V. The resistors are R = 1 k Ω and R_L = 10 Ω . The switch SW can be selected either in position 1 or position 2. A current signal I_i with average I_{av} and peak-to-peak I_{pp} is applied to the input.
 - (a) When SW is at position 2, find the small signal gain V_L/I_i . (3%)
 - (Case 1) When I_i is a saw-tooth waveform with $I_{av} = 0$ and $I_{pp} = 10$ mA,
 - (b) plot the waveform of V_L for SW being at position 1. (3%)
 - (c) plot the waveform of V_L for SW being at position 2. (3%)
 - (Case 2) When I_i is a saw-tooth waveform with $I_{av} = 0$ and $I_{pp} = 20$ mA,
 - (d) plot the waveform of V_L for SW being at position 1. (3%)
 - (e) plot the waveform of V_L for SW being at position 2. (3%)

Note: Be sure to properly indicate the voltage values in your plots.

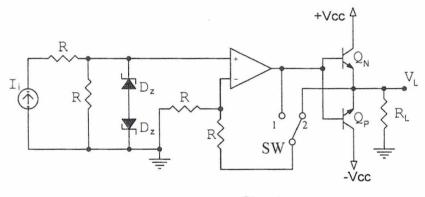


Fig. 1

- (1B) A Si-BJT with β = 100 and r_o = ∞ is used to make a common emitter amplifier biased by a constant current source as shown in Fig. 2. The capacitance C is very large.
 - (a) Sketch the small signal equivalent circuit for this amplifier using hybrid- π -model. (4%)
 - (b) If a voltage gain of $V_o/V_i = -200$ is desired, find the value of I_Q and the input resistance R_{in} .

(6%)

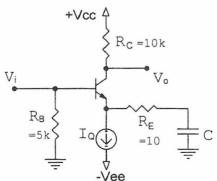
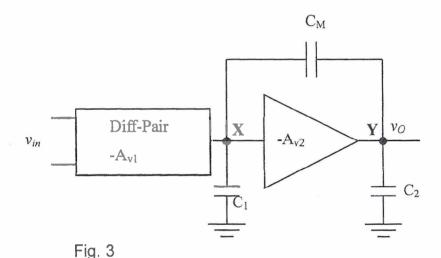
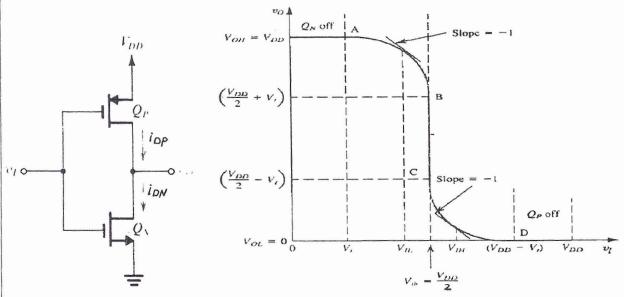



Fig. 2

國立清華大學命題紙

- **2.** (25%) A 2-stage amplifier with an equivalent circuit is shown in Fig. 3. Let A_{v1} =100, A_{v2} =100, C_1 = C_2 =0.1pF and the resistance at node X, Y are R_X = R_Y =1M Ω .
- (a) If $C_M=0$, write down the transfer function of the overall gain, $A_v(\omega)$. (5%)
- (b) Sketch both the gain and phase Bode plots of this amplifier. (5%)
- (c) With Miller compensation, $C_M=10pF$, find the new dominant pole, ω_{pD} . (5%)
- (d) Sketch the Bode plots (gain and phase) of the amplifier with C_M =10pF. Estimate the unity gain bandwidth and the phase margin, ϕ_M and label them in your plots. (10%)



國立清華大學命題紙

95 學年度 電機領域聯合招生 系(所) 組碩士班入學考詢

3. (25%)

(a) For a CMOS linear amplifier as shown below, what **are** the operation modes of Q_N and Q_P in BC and CD regions, respectively? (Ans: off or triode or saturation)? (8%)

- (b) As shown above with v_I =0 V, please **sketch** the i_{DN} and i_{DP} vs v_O curves. Please **indicate** the operation point and V_{OH} . (9%)
- (c) In memory circuit, **should** the Word and Bit lines be connected to source/drain, gate, or substrate of MOSFET, respectively? (4%)
- (d) What are the approximate dimensions (in cm) of channel length and gate oxide thickness of MOSFET in current VLSI, respectively? (4%)
- 4. (25%) Consisted of a Schottky diode, two resistors, and three BJTs, a modified ECL with three inputs A, B, V_R and an output C is described as follows. Two primary inputs A, B and a reference voltage V_R are connected to the bases of BJT Q2, Q1, and Q3, respectively; All the emitters of BJT Q1, Q2, and Q3 are connected to node E, and the first resistor R_E are wired between node E and ground; Both the collectors of BJT Q1 and Q2 are wired to power supply Vcc, while the collector of BJT Q3 is the output C. The Schottky diode and the second resistor R_C are wired in parallel between power supply Vcc and output C.
- (a) Please draw this modified ECL circuit. (10%)
- (b) Write the output function C in terms of inputs A and B with brief explanation. (6%)
- (c) Find voltages of V_R , logic-0 and logic-1 in terms of V_C and V_γ , where V_γ is the turn-on voltage of the Schottky diode. (9%)