- 1. At a certain gas station, 40% of the customers use regular unleaded gas, 35% use extra unleaded gas, and 25% use premium unleaded gas. Of those customers using regular gas, only 30% fill their tanks. Of those customers using extra gas, only 60% fill their tanks, while of those customers using premium gas, 50% fill their tanks.
  - (a) (5%) What is the probability that the next customer will request extra unleaded gas and fill the tank?
  - (b) (5%) What is the probability that the next customer fills the tank?
  - (c) (10%) If the next customer fills the tank, what is the probability that regular gas is requested? What is the probability for Extra gas?
- 2. Find Pr(X > Y) assuming that X and Y are independent and that
  - (a) (10%) X and Y are uniformly distributed between 0 and 1;
  - (b) (10%) X and Y are geometrically distributed with parameters  $p_X$  and  $p_Y$ , respectively. (That is,  $\Pr(X=n)=p_X(1-p_X)^{n-1}$ .)
- 3. Let  $X_1$ ,  $X_2$  and  $X_3$  be mutually independent random variables with Poisson distributions having means 1, 2, 3, respectively. That is,

$$\Pr(X_i = n) = \frac{e^{-i}i^n}{n!}$$

for i = 1, 2, 3.

- (a) (10%) Find the moment-generating function of the sum  $X_1 + X_2 + X_3$ .
- (b) (10%) How is the sum  $X_1 + X_2 + X_3$  distributed?
- (20%) Solve the following system of difference equations

$$x_1(n+1)-x_1(n)-x_2(n) = n$$

$$x_2(n+1) - x_1(n) + x_2(n) = 3,$$

subject to the initial conditions  $x_1(0) = 0$  and  $x_2(0) = -10$ .

- 5. (10%) Ten boys are grouped into five tennis doubles pairs. In how many ways can this be done?
- 6. (10%) How many terms are there in the expansion of  $(a+b+c+d)^5$ ?