國	並	清	華	大	學		命	題	紙
98 學年	芆	動力機械		系(所)) 甲.	内、	J	组码上址》	组长山

科目<u>工程數學</u>科目代碼<u>1003 共 2 頁第 1 頁 *請在【答案卷卡】內作答</u> 1103、1203

1. Solve the following ordinary differential equations

(i)
$$y'' = x (y')^3$$

(10%)

(ii)
$$x^2y'' + (x-1)(xy'-y) = x^2e^{-x}$$
 (10%)

2. Find the inverse Laplace transform of

$$F(s) = \frac{e^{-s}}{s(s+1)(s+2)}$$
 (10%)

3. Given the matrix

$$\mathbf{A} = \begin{bmatrix} \frac{31}{40} & \frac{9\sqrt{3}}{40} \\ \frac{9\sqrt{3}}{40} & \frac{13}{40} \end{bmatrix} ,$$

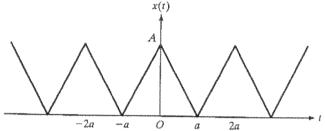
compute
$$\lim_{n\to\infty} \mathbf{A}^n$$

(10%)

4. Evaluate the line integral of the normal derivative of a function w(x,y) counterclockwise over the boundary curve C of the rectangle defined by $0 \le x \le 1$, and $0 \le y \le 2$, i.e. to evaluate the following integral

$$\oint_C \frac{\partial w}{\partial n} ds \quad \text{with} \quad w = e^x + e^{2y}$$
 (10%)

國立清華大學命題紙


98 學年度 動力機械 系 (所) 中、丙、丁 組碩士班入學考試

科目<u>工程數學</u>科目代碼<u>1003 共 2 頁第 2 頁 *請在【答案卷卡】內作答</u> ||03、lz03

5. Any periodic function x(t), of period 2a, can be expressed in the form of a complex Fourier series $x(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_o t}$ where ω_o is the fundamental frequency given as $\omega_o = \frac{\pi}{a}$. Using the relation $\int t e^{kt} dt = \frac{e^{kt}}{k^2} (kt-1)$ to find the complex Fourier series expansion of the function below.

 $x(t) = \begin{cases} A(1 + \frac{t}{a}), & -a \le t \le 0\\ A(1 - \frac{t}{a}), & 0 \le t \le a \end{cases}$

with the period 2a and the fundamental frequency ω_o . (15%)

6. The free vibration equation of a bar (length ℓ) along the axial direction can be expressed as $c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = \frac{\partial^2 u}{\partial t^2}(x,t).$

The bar is fixed at x = 0 and free at $x = \ell$ and the boundary conditions can be expressed as $u(0,t) = 0, \quad t \ge 0$

$$\frac{\partial u}{\partial r}(\ell, t) = 0, \quad t \ge 0$$

The initial conditions can be stated as $u_o(x)$ and $\dot{u}_o(x)$. Using the method of separation of variables U(x,t) = U(x)T(t) to find the eigenfunctions $u_n(x,t)$ and eigenvalues λ_n of this vibrating bar and the general free vibration solution. (15%)

(10%)

7. Evaluate the following integrals by complex function theory

(i)
$$\int_{0}^{\infty} \frac{dx}{\sqrt{x(x+4)(x-5)}}$$

(ii)
$$\int_{0}^{\infty} \frac{\cos x}{x^{1-m}} dx$$
, $0 < m < 1$ (10%)