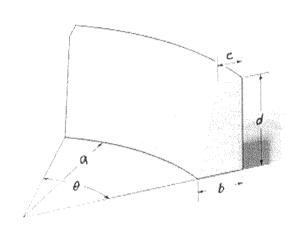
國 立 清 華 大 學 命 題 紙

98 學年度工程與系統科學系乙組碩士班入學考試 科目工程力學(含靜力學、材料力學) 科目代碼 2705 共 3 頁第 1 頁 *請在【答案卷卡】內作答

- 1. A circular sea wall is made of concrete. (>0%)
- (1) Determine the total weight of the wall if the concrete has a specific weight of $\gamma_c = 24 \frac{kN}{m^3}$
- (2) Determine the magnitude of the resultant hydrostatic force acting on this sea wall Given:


$$a = 20 \text{ m}$$

$$b = 5 \text{ m}$$

$$c = 2.5 \text{ m}$$

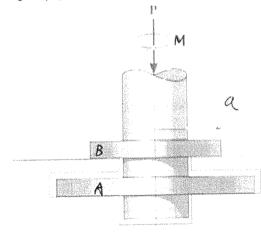
$$d = 10 \text{ m}$$

$$\theta = 50 \deg$$

2. The *double-collar bearing* is subjected to an axial force **P**. Assuming that collar A supports kP and collar B supports (1-k)P, both with a uniform distribution of pressure, determine the maximum frictional moment M that may be resisted by the bearing. (>0)

Given:

$$P = 4 \text{ kN}$$


$$a = 20 \text{ mm}$$

$$b = 10 \text{ mm}$$

$$c = 30 \text{ mm}$$

$$\mu_{s} = 0.2$$

$$k = 0.75$$

. Ь

題 大 紙 清 華 國 立

98 學年度工程與系統科學系乙組碩士班入學考試

科目工程力學(含靜力學、材料力學) 科目代碼 2705 共 3 頁第 2 頁 *請在【答案卷卡】內作答

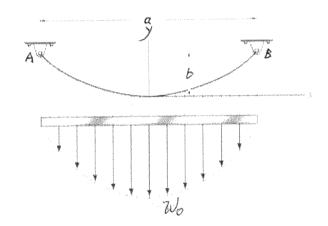
3. The cable is subjected to the parabolic loading $w = w_0 \left(1 - \left[\frac{2x}{a} \right]^2 \right)$. Determine the equation y = f(x) which

defines the cable shape AB and the maximum tension in the cable. $(>0)_{0}$

Units used:

$$kN_{\star} = 10^3 \text{ N}$$

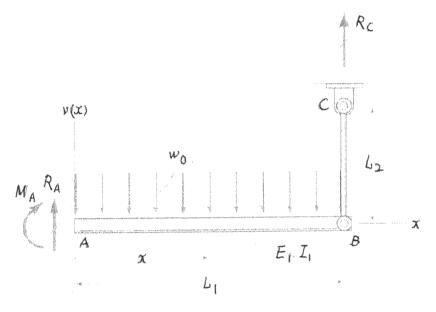
Given:

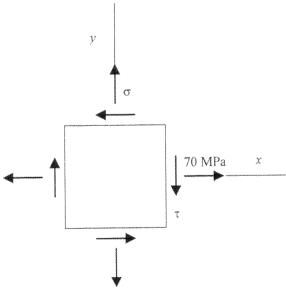

$$w = w_0 \left[1 - \left(\frac{2x}{a} \right)^2 \right]$$

$$a = 30 \text{ m}$$

$$a = 30 \text{ m}$$

$$w_0 = 2.5 \, \frac{\text{kN}}{\text{m}}$$


$$b = 6 \text{ m}$$


國立清華大學命題紙

98 學年度工程與系統科學系乙組碩士班入學考試 科目工程力學(含靜力學、材料力學) 科目代碼 2705 共 3 頁第 3 頁 *請在【答案卷卡】內作答

4. At end B, the cantilever beam is pinned to a uniform rod whose cross-section area is A_2 , whose length is L_2 , and whose modulus of elasticity is E_2 . The beam supports a uniformly distributed load of intensity w_0 ; its flexural rigidity is E_1I_1 , and its length is L_1 . (a) Use the second-order integration method to determine the reactions R_A and M_A at A, and the tension, F_2 , in the rod. (b) Determine an expression for the deflection curve, v(x), of the beam. (>0)

5. The state of plane stress at a point can be described by a known tensile stress $\sigma_x = 70$ MPa, an unknown tensile stress σ_x , and an unknown shear stress τ , as indicated in the figure. At this point the maximum in-plane shear stress is 78 MPa, and one of the two in-plane principal stresses is 22 MPa(T). Determine the values of the two unknown stresses, labeled σ and τ on the figure, and determine the second in-plane principal stress. The stresses act in the directions shown, that is, $\sigma_y = \sigma$ and $\tau_{xy} = -\tau$. (>0).

