- A bipolar junction transistor is biased at J_C= 2 mA and T = 300°K. The transistor parameters are β = 100, V_A= 100 V.
 - (a) Sketch its low frequency hybrid-π equivalent circuit and determine the transconductance, base input resistance and collector output resistance. (4%)
 - (b) Based on your hybrid-π circuit, determine the h-parameters: h_{ie}, h_{re}, h_{fe} and h_{oe}. (4%)
 - (c) Repeat (b) when a resistor r_{cb} = 1 MΩ is connected between base and collector. (8%)
- 2. A MOSFET with parameters $k_n = 0.5 \text{ mA/V}^2$, $V_{TN} = 1 \text{ V}$ is used in the circuit of Fig. 1. The component values are $V^+ = -V^- = 10 \text{ V}$, $I_Q = 2 \text{ mA}$,

$$C_1 = C_2 = \infty$$
, $R_i = 500 \Omega$, $R_D = 2.5 k\Omega$.

- (a) Find the dc voltage of source V_s.(4%)
- (b) Sketch the small signal equivalent circuit. (4%)
- (c) Calculate the values R_{in} and V_o/V_i.
 (6%)

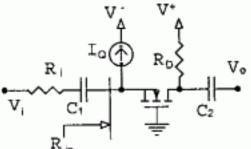


Fig. 1

A common source equivalent circuit is shown Fig. 2, the transistor transconductance is g_m = 3 mA/V. (a) Calculate the equivalent Miller capacitance. (b) Determine the upper 3dB frequency (in Hz) for the small signal voltage gain. (10%)

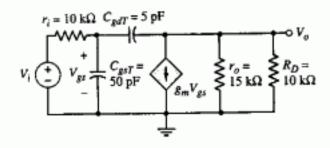


Fig. 2

九十一學年度 科目 頁第 2

- 4. Consider the current source shown in Fig. 3, with transistor parameters $\mu_n C_{ox} = 40 \ \mu A/V^2$, $V_{TH} = 1 \ V$, and $\lambda = 0$. Let $V^+ = 5 \ V$, $V^- = 0$, $V_{GS2} =$ 1.85 V. Design the circuit such that $I_{REF} = 0.25$ mA, and $I_O = 0.1$ mA. (10%)
- 5. The transistors in the circuit of Fig. 4 have $\beta = 100$, $V_{BE(on)} = 0.7$ V, and V_A = 100 V. Determine the differential- and common-mode input resistance, R_{id} and R_{icm} . Assume thermal voltage $V_T = 25$ mV. (15%)
- Sketch and carefully label v_o for each of the circuits described in Fig. 5, given the power supplies are ± 10 V, and $v_{in} = 1$ Sin wt volts.
 - (a) The circuit has the form given in Fig. 1 with $R_f = 5 \text{ k}\Omega$ and $R_2 = 1$ kΩ. In addition, an ideal diode is connected in series with R₂ (cathode on the left). (5%)
 - (b) The circuit is the same as in part (a) except that the diode is connected in series with R_f. (5%)

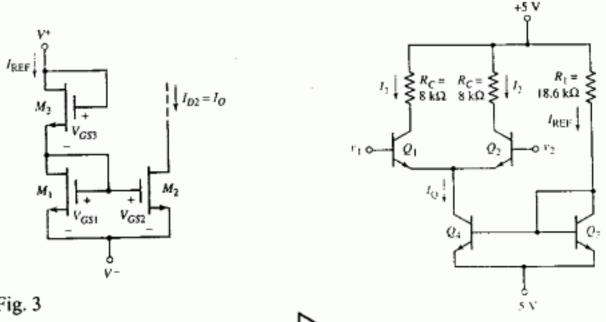


Fig. 3

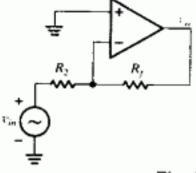


Fig. 5

Fig. 4

- 7. An inverting-style op amp circuit is constructed with R₂ = 10 kΩ and R_f replaced by an inductor L = 100 mH. Determine the stability of this circuit. Assuming that the op amp has the A_{OL} gain-phase characteristics as shown in Fig.6. (10%)
- 8. The circuit illustrated in Fig. 7 is known as a Wien bridge oscillator.
 - (a) Determine the frequency of oscillation. (5%)
 - (b) Find the op amp closed-loop gain needed to just make this circuit oscillate. (5%)
 - (c) Plot the gain-phase characteristics of the feedback network. (5%)

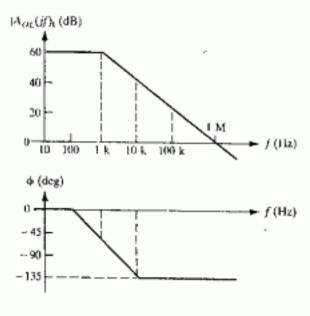


Fig. 6

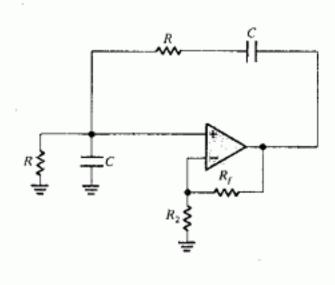


Fig. 7