Exchange anisotropy in PtMn/Ni$_{80}$Fe$_{20}$ films on MgO(1 1 0)

D.H. Weia,*, C.C. Yub, H.M. Duhc, Y.D. Yaob, J.H. Chienc, T.S. China

aDepartment of Materials Science and Engineering, National Tsing Hua University, HsinChu 300, Taiwan, ROC
bInstitute of Physics, Academia Sinica, Taipei 115, Taiwan, ROC
cDepartment of Physics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan, ROC

Abstract

For the first time, we successfully developed exchange anisotropy of PtMn/Ni$_{80}$Fe$_{20}$ (110) bilayers grown on a MgO(110) substrate with or without Pt buffer layer. The results of angular-dependent magneto-optical Kerr effect indicate that the PtMn/Ni$_{80}$Fe$_{20}$(110) films possess unidirectional anisotropy with coercivity and exchange field around 135Oe and 60Oe, respectively. The Pt buffer layer strongly influences the formation of epitaxial PtMn/Ni$_{80}$Fe$_{20}$ bilayers.

© 2003 Elsevier B.V. All rights reserved.

PACS: 75.30.Gw; 75.50.Ee; 75.70._i

Keywords: PtMn; NiFe; Exchange anisotropy; Epitaxial films

The exchange coupling effect across an antiferromagnetic–ferromagnetic (AF–F) interface has attracted considerable interest as it plays a key role in spin valve sensors [1]. PtMn is one of the most promising candidates for the antiferromagnetic pinning layer due to its superior thermal stability. Owing to a crystalline-induced bidirectional and a step-induced unidirectional exchange anisotropy phenomena in PtMn/Ni$_{80}$Fe$_{20}$(110) bicrystal on MgO(100) [2] and quaticrystal [3] films on sapphire, respectively, the bicrystal layer on MgO(100) a bcc buffer layer was required to induce the (1 1 0) orientation. Direct (1 1 0) textured films on MgO(110) has never been tried before. In a continuous effort to understand the effect of exchange anisotropy and interface effect on the magnetic behaviors, we studied the as-deposited PtMn/Ni$_{80}$Fe$_{20}$(110) bilayers on MgO(110) substrates with or without a 5 nm thick Pt buffer layer prepared by molecular beam epitaxy (MBE). The deposition rate and temperature of the Ni$_{80}$Fe$_{20}$ and PtMn were controlled at about 0.05 Å/s and 200°C, respectively. During deposition, the growth pressure was controlled below 5×10$^{-8}$Torr and no magnetic field was applied. The crystal structure was characterized by in situ reflection high-energy electron diffraction (RHEED) and ex situ X-ray diffraction (XRD). The exchange anisotropy of the PtMn/Ni$_{80}$Fe$_{20}$ films was investigated by angular-dependent magneto-optical Kerr effect (MOKE). Deposition temperature is a key parameter for epitaxial growth. Epitaxial structure at 200°C was not possible without Pt buffer, so a 5nm thick Pt buffer layer was invariably adopted [4].

On MgO(110) substrate, the Pt buffer layer was grown with FCC(110) orientation, and the subsequent Ni$_{80}$Fe$_{20}$ and PtMn layers were mainly grown with FCC and FCT(110) structure as observed by XRD, shown in Fig. 1. Fig. 1 also indicates that PtMn layer was grown as an ordered, tetragonal L1$_0$ structure, with a lattice parameter = 3.66 Å along c-axis. Figs. 2(a) and (b) showed the typical RHEED images of MgO(110) substrates and the Pt(110) buffer layer with the probing e-beam aligned along the MgO[1–10] in-plane direction. The oblique diffraction fringes in Fig. 2(b) indicated that (1 1 1) facets formed on the Pt surface and met an angle 35° to the Pt(110) plane [5].

For the PtMn/Ni$_{80}$Fe$_{20}$ bilayers grown on Pt(110) buffer layers, we also observed the oblique (1 1 1) diffraction fringes on the bilayers (110) surface as shown in Figs. 2(c) and (d) for Ni$_{80}$Fe$_{20}$ and PtMn,
respectively. The investigations of XRD and RHEED patterns showed that the main epitaxial relations are MgO(110)//Pt(110)//Ni 80Fe20(110)//PtMn(110), and MgO[001]//Pt[001]//Ni 80Fe20[001]//PtMn[001].

The azimuthal distributions of the exchange field, He, and coercivity, Hc, of the PtMn/Ni80Fe20 bilayers were plotted in Fig. 3. Based on the Stoner–Wohlfarth model [6], the magnetic energy per unit area of exchange coupled F/AF bilayers can be expressed as

\[
E = K_F t_F \sin^2 \theta_F F + K_{AF} t_{AF} \sin^2 \theta_{AF} - J_E \cos(\theta_F - \theta_{AF}) - H_a M_s t_F \cos(\alpha - \theta_F),
\]

where \(H_{\text{c0}} = 2K_F/M_s\) and \(H_{\text{e0}} = J_E/M_s t_F\) are the anisotropy field and exchange field along the easy axis, respectively.

From the in-plane azimuthal analysis, the distribution of coercive and exchange fields of PtMn/Ni80Fe20 bilayers displayed a two-fold symmetry and an unidirectional anisotropy, respectively, as shown in Fig. 3. The exchange field reaches the maximum value (about 60 Oe) at the easy axis, MgO[110] in-plane direction. This condition usually applies to the simple uniaxial F and AF layers, so our case could consist of the simple model prediction based on Eq. (2). Comparing with previous PtMn/Ni80Fe20 bilayers grown on the step structure [3], the strength of exchange coupling in PtMn/Ni80Fe20(110) single crystal films is only about half that of the magnitude of the step-induced one. This is possibly contributed by the interface roughness effect induced by the (111) facet structure.

References