Identification of 88Se and new levels in 84,86Se

E. F. Jones, 1 P. M. Gore, 1 J. H. Hamilton, 1 A. V. Ramayya, 1 J. K. Hwang, 1 A. P. de Lima, 1,2 S. J. Zhu, 1,3,4 C. J. Beyer, 1 Y. X. Luo, 1,5 W. C. Ma, 6 J. O. Rasmussen, 5 I. Y. Lee, 5 S. C. Wu, 5 T. N. Ginter, 7 M. Stoyer, 8 J. D. Cole, 9 A. V. Daniel, 10 G. M. Ter-Akopian, 10 and R. Donangelo 11

1Physics Department, Vanderbilt University, Nashville, Tennessee 37235, USA
2Department of Physics, University of Coimbra, P-3000 Coimbra, Portugal
3Joint Institute for Heavy Ion Research, Oak Ridge, Tennessee 37830, USA
4Department of Physics, Tsinghua University, Beijing 100084, China
5Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
6Department of Physics, Mississippi State University, Mississippi 39762, USA
7NSCL, Michigan State University, East Lansing, Michigan 48824, USA
8Lawrence Livermore National Laboratory, Livermore, California 94550, USA
9Idaho National Laboratory, Idaho Falls, Idaho 83415, USA
10Flerov Laboratory for Nuclear Reactions, JINR, Dubna, Russia
11Universidade Federal do Rio de Janeiro, CP 68528, RG Brazil

(Received 14 September 2005; published 18 January 2006)

From the analysis of γ- γ γ coincidence data taken with Gammasphere of the prompt γ rays in the spontaneous fission of 252Cf, the $2^+ \rightarrow 0^+$ transition in 88Se was identified for the first time. Also, the $4^+ \rightarrow 2^+$ and $6^+ \rightarrow 4^+$ transitions in 86Se were identified along with four new states above 4^+ in 84Se. Surprisingly, the 2^+ energy rises in 88Se compared to 86Se. This increase in energy could arise from the interaction of a low-lying excited 0^+ state with different deformation and the 0^+ ground state to depress the ground-state energy.

DOI: 10.1103/PhysRevC.73.017301

PACS number(s): 23.20.Lv, 21.60.Cs, 25.85.Ca, 27.50.+e

The levels of $N = 50$, 52, and 54 selenium nuclei provide interesting tests of the spherical shell model around the $N = 50$ closed shell. The 0^+, 2^+, 4^+, and one higher level were previously known below 3371.8 keV in 84Se from the β decay of 84As [1], as were the 0^+ and 2^+ levels in 86Se [2]. The ground state of 88Se decays to 88Br with a half-life of 1.52 s [2]. The systematics of the previously known 2^+ and 4^+ states in the Se isotopes [2] are shown in Fig. 1. One can clearly see in Fig. 1 the effect of $N = 50$ shell closure, where the 2^+ and 4^+ energies rise dramatically. The energies of the $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ sequence decrease in 86Se. Therefore, it is interesting to extend the systematics to more neutron-rich nuclei and to higher spin states in the known nuclei.

With our γ-γ-γ coincidence data in the spontaneous fission of 252Cf obtained with Gammasphere, identification of the levels in 88Se is possible along with extension of the levels in 84Se and 86Se above 4^+. Since this work was completed [3], the levels of 84Se have been studied by deep-inelastic processes with quite similar overall results [4].

Our Gammasphere γ-γ-γ coincidence study of the spontaneous fission of 252Cf with 102 detectors and a 62-μCi 252Cf source yielded 5.7×10^{11} triples and higher fold coincidences. A coincidence resolving time of about 200 ns was used. Further experimental details are found in Luo et al. [5]. With the new 2000 data, we were able to see transitions that were not clearly discernible with our earlier Gammasphere data.

The previously established 1455.1-keV $2^+ \rightarrow 0^+$ and 667.1-keV $4^+ \rightarrow 2^+$ transitions in 84Se [1] and the 704.1-keV $2^+ \rightarrow 0^+$ transition in 88Se [2], along with the relative spontaneous fission yields of 84,86,88Se [6], make possible the identification of new transitions in these selenium isotopes.

The high 2^+ energy of 1455.1 keV in $N = 50$ 84Se also provides a gating transition that is relatively clean.

When we gate on known transitions in 84Se or in 86Se, the yields are such that we should see transitions in their fission partners 160,162,164Gd. Identification of the 162,164Gd levels is reported elsewhere [7,8]. The relative yields of 162,164Gd should change when gating on 84Se and 86Se transitions. The yields are typically maximum for the $4n$ channel [9], This was found to be the case here also. From the measured intensities of the 84Se and 86Se $2^+ \rightarrow 0^+$ transitions when double gating on the 164.8-keV and 253.6-keV transitions in 162Gd, we find that the 86Se yield is six times that of 84Se. That is, the $4n$ channel is six times larger than the $6n$ channel, in agreement with the expected trends.

Figure 2 shows a double gate on the previously established 1455.1-keV $2^+ \rightarrow 0^+$ and 667.1-keV $4^+ \rightarrow 2^+$ transitions in 84Se. The 1249.6-keV transition in Fig. 1 is known from β decay to feed the 4^+ level [2]. The new strong 1415- and 1580-keV transitions and the weak 1360-keV one are assigned in this work to 84Se. The 1249.6, 1415, and 1580-keV transitions are also seen in the deep inelastic work [3], but the 1360-keV transition is not.

In two spectra from double gates on the 84Se transition at 1415 keV with the 164.8-keV peak, which could be the $4^+ \rightarrow 2^+$ transition in 162Gd in Fig. 3(a), and with the much stronger yield $4n$ partner 164Gd 168.6-keV $4^+ \rightarrow 2^+$ transition [7] in Fig. 3(b), one sees that the 164.8-keV peak is essentially a real transition in 84Se with little if any contribution from 162Gd because the 1455.1-keV transition is much stronger in Fig. 3(a) than in Fig. 3(b), whereas it should be significantly smaller if it were only from the $6n$ channel. A 165-keV transition with the same placement is seen in the deep inelastic work [2].
As further evidence for the 164.8-keV transition in ^{84}Se, a double gate on the 164.8-keV transition (with gate width of ≈ 2 keV) and the 1455.1-keV $2^+ \rightarrow 0^+$ transition in ^{82}Se clearly shows the newly identified 1415-keV transition and very little if any of the new 1580-keV $6^+ \rightarrow 4^+$ transition in ^{84}Se. In a double gate on the 4π channel 168.6-keV ^{164}Gd $4^+ \rightarrow 2^+$ transition (again with gate width of a single channel) and the 1455.1-keV $2^+ \rightarrow 0^+$ transition in ^{84}Se, one sees both the 1415- and 1580-keV ^{84}Se transitions with essentially equal intensities to those in Fig. 1, but with about one-sixth the intensity of the 1415-keV transition in the $(164.8–1455.1)$-keV double gate, not six times more as expected from the 4π, 6π channel yields [6]. Thus, the newly assigned 165-keV transition clearly feeds the 1415-keV transition in ^{84}Se.

A γ transition at 703.5 keV is seen weakly in our spectra and is assigned to ^{84}Se. In a double gate on the new 703.5-keV and known 667.1-keV transitions, one sees the newly assigned 1415- and 1580-keV transitions, along with the known 1455.1-keV one. Thus the 703.5-keV transition is placed above the 1580-keV one. Double gates on the (667.1–1415)-keV transitions and the (703.5–1415)-keV transitions confirm the 703.5- and 1415-keV transitions and their placements.

In a double gate on the 164.8-keV $4^+ \rightarrow 2^+$ and the 253.6-keV $6^+ \rightarrow 4^+$ transitions in ^{162}Gd, as seen in Fig. 4(a), one can see the known 704.1-keV and presently assigned 863.8- and 505.5-keV transitions in the 4π channel ^{86}Se, and also the 667.1-keV transition in the 6π channel ^{84}Se. The 703.5-keV transition in ^{84}Se has one-eighth the intensity of the 667.1-keV one and so contributes very little to the 704.1-keV transition in ^{86}Se. In a double gate on background at 160 keV and the 253.6-keV $6^+ \rightarrow 4^+$ transition in ^{162}Gd, the transitions in ^{162}Gd and $^{84,86}\text{Se}$ disappear. The placements of the new 863.8- and 505.5-keV transitions in ^{86}Se are confirmed by their intensities in various different double gates and are assigned as the $4^+ \rightarrow 2^+$ and $6^+ \rightarrow 4^+$ transitions. For example, in a double gate on the 164.8-keV $4^+ \rightarrow 2^+$ transition in ^{162}Gd and the newly assigned 863.8-keV $4^+ \rightarrow 2^+$ transition in ^{86}Se, shown in Fig. 4(b), we see the expected transitions in ^{162}Gd and the new 505.5-keV and known 704.1-keV transitions in ^{86}Se. In a $(505.5–863.8)$-keV double gate, we see the 704.1-keV ^{86}Se line and the ^{162}Gd ones, both of which disappear in a background double gate.

FIG. 3. High-energy region of double gates (a) on $^{84}\text{Se} + (^{162}\text{Gd})$ 164.8- and ^{84}Se 1415-keV transitions and (b) on ^{162}Gd 168.6- and ^{84}Se 1415-keV transitions.

FIG. 4. Double gates (a) on 164.8- and 253.6-keV transitions in ^{162}Gd and (b) on ^{162}Gd 164.8- and ^{86}Se 863.8-keV transitions.
In a double gate on the previously known 266.5-, 253.6-keV \(6^+ \rightarrow 4^+\) transitions and 353.0-keV \(8^+ \rightarrow 6^+\) transitions in \(^{160}\text{Gd}\) and \(^{162}\text{Gd}\), respectively, one sees peaks at 704.1 and 863.8 keV as shown in Figs. 5(a) and 5(b). These are the transitions in the partner isotope \(^{86}\text{Se}\) (see Fig. 7). We also observed a new 886-keV transition in the partner isotope \(^{88}\text{Se}\). Double gates on the 886-keV transition in \(^{88}\text{Se}\) and the 266.5-keV transition in the \(4n\) partner \(^{160}\text{Gd}\), and on 886- and 253.6-keV transitions in the \(2n\) partner \(^{162}\text{Gd}\) as seen in Figs. 6(a) and 6(b) show their other respective \(^{160}\text{Gd}\) transitions, all of which disappear in the background gate of Fig. 6(c). These and similar other double gates clearly establish the 886.0-keV transition in \(^{88}\text{Se}\).

These data lead to the level schemes of \(^{84,86,88}\text{Se}\) shown in Fig. 7. The new 1360-, 1415-, and 1580-keV transitions feed the \(4^+\) level and the new 703.5- and 165-keV transitions feed and depopulate the \((6^+\) level in \(^{84}\text{Se}\). The new \(4^+ \rightarrow 2^+\) 863.8-keV and \(6^+ \rightarrow 4^+\) 505.5-keV transitions in \(^{86}\text{Se}\) were identified. The \(2^+\) level of \(^{88}\text{Se}\) was also identified. The \(N = 50\) \(^{86}\text{Kr}\) level scheme, from the work of Winter \textit{et al.} [10], is compared to the new level scheme for \(^{84}\text{Se}\) in Fig. 7. There is a strong similarity of these two nuclei. Based on this comparison, \(6^+\) is assigned to the level depopulated by the 1580-keV transition in \(^{84}\text{Se}\).

![FIG. 5. Double gates (a) on 266.5- and 353.0-keV transitions in \(^{160}\text{Gd}\) and (b) on 253.6- and 336.2-keV transitions in \(^{162}\text{Gd}\).](image)

![FIG. 6. Double gates (a) on 266.5-keV (\(^{160}\text{Gd}\)) and 886-keV (\(^{88}\text{Se}\)) transitions, (b) on 253.6-keV (\(^{162}\text{Gd}\)) and 886-keV (\(^{88}\text{Se}\)) transitions, and (c) on 253.6-keV (\(^{162}\text{Gd}\)) transition and background. Narrow gates were set on the low-energy transition.](image)

![FIG. 7. (Color online) Level schemes of \(^{84,86,88}\text{Se}\) and \(^{86}\text{Kr}\) [10]. The 3482.2-, 3537.2-, 3702.2-, and 4405.7-keV states in \(^{86}\text{Se}\), the 1567.9- and 2073.4-keV states in \(^{88}\text{Se}\), and the 886-keV state in \(^{88}\text{Se}\) are identified in the present work.](image)
There are marked differences in the level structures of ^{84}Se with a spherical closed neutron shell at $N = 50$ and ^{86}Se with $N = 52$. The $^{84,86}\text{Se}$ level schemes are very similar to those of $N = 50, 52$ ^{86}Kr. The levels of ^{88}Kr and ^{86}Se both have lower 2^+ energy and a smaller energy for the $4^+ \rightarrow 2^+$ transition. It is surprising that the $2^+ \rightarrow 0^+$ transition in ^{88}Se increases in energy compared to ^{86}Se. The 707.5-keV $2^+ \rightarrow 0^+$ and 799.2-keV $4^+ \rightarrow 2^+$ transitions in $N = 54$ ^{90}Kr are lower than those in ^{88}Kr (774.7 and 868.8 keV, respectively).

In $^{74,76}\text{Kr}$, the $2^+ \rightarrow 0^+$ transitions were found to be much larger than would have been expected from an extrapolation of the moments of inertia of higher energy yrast levels, which have superdeformation [11]. The $2^+ \rightarrow 0^+$ energies are characteristic of near-spherical ground states. However, lifetime measurements indicate large deformation for the yrast levels in $^{74,76}\text{Kr}$. The 0^+ energies were found to be pushed down by 256 and 187 keV from their unperturbed energies by the interaction of a low-lying near-spherical 0^+ state with the deformed ground state to make the $2^+ \rightarrow 0^+$ energy characteristic of a spherical shape [11]. The unexpected increase in the $2^+ \rightarrow 0^+$ energy in ^{88}Se compared to $N = ^{86}\text{Se}$ could likewise arise from the interaction of a low-lying 0^+ state with different deformation and the ground band to push down the ground-state energy. Unfortunately, not enough is known about the higher yrast levels to determine the relative deformations here. Probably, the ground state is near spherical in ^{88}Se since it is only four neutrons away from the $N = 50$ closed shell.

The authors are indebted for the use of ^{252}Cf to the office of Basic Energy Sciences, U. S. DOE, through the transplutonium element production facilities at ORNL and acknowledge the essential help of I. Ahmad, J. Greene, and R. V. F. Janssens in preparing and lending the ^{252}Cf source. Work at VU, INEEL, LBNL, LLNL, MSU, and ANL was supported by U. S. DOE Grant and Contract N.S. DE-FG05-88ER40407, DE-AC07-76ID01570, DE-AC03-76SF00098, W-7405-ENG-48, DE-FG05-95ER40939, and W-31-109-ENG-38; work at Tsinghua is supported by National Science Foundation of China and Science Foundation for Nuclear Industry. The JIHIR is supported by Univ. of Tennessee, Vanderbilt Univ., ORNL, and the U. S. DOE.