CP violation in $\eta, K_L \rightarrow \mu \bar{\mu}$ decays and electric dipole moments of electron and muon

C. Q. Geng* and J. N. Ng

TRIUMF, Theory Group, 4004 Westbrook Mall, Vancouver, British Columbia, Canada V6T 2A3

(Received 28 March 1990)

The CP-violating longitudinal-polarization asymmetry P_L of the outgoing muon in $\eta \rightarrow \mu \bar{\mu}$ and $K_L \rightarrow \mu \bar{\mu}$ decays and the electric dipole moments of an electron and muon (d_e, d_μ) are studied in various extensions of the standard CP-violation model. The possibility of having large P_L in both decays and d_μ is explored.

I. INTRODUCTION

The standard model of electroweak interactions is a very successful theory in that presently no experimental result contradicts its predictions. The origin of CP violation in the model comes from the complex Kobayashi-Maskawa (KM) matrix in the quark sector where only one physical phase exists for three generations of quarks. The CP violation observed in the neutral-kaon system can be easily incorporated within this framework. The origin of this CP nonconservation lies in complex quark matrices which in turn can be traced back to complex Yukawa couplings. Spontaneous symmetry breaking (SSB) is then responsible for this phase in a roundabout way. None the less, it would be "unnatural" if the KM phase is not there. However, many extensions of the standard model could also give rise to CP violation in a different manner. In order to determine the mechanism of CP violation and hence distinguish between different theoretical models, it is important to look for new CP-violating effects which are not within the standard model. It will be particularly important if these are within reach of the current round of experiments. Two examples of the most interesting such effects are CP violation in the lepton sector such as the electric dipole moments (EDM's) of charged leptons (d_e), and the muon longitudinal-polarization asymmetry P_L in $\eta \rightarrow \mu \bar{\mu}$ and $K_L \rightarrow \mu \bar{\mu}$ decays.

In the standard model, there is no CP violation in the lepton sector because of the absence of right-handed neutrinos. One expects d_e to be zero at the two-loop level like the neutron EDM (d_n). Recently, Hoogeveen has calculated the contributions to the electron EDM (d_e) beyond two loops in the standard model and found d_e to be $\lesssim 10^{-38}$ e cm. The possibility of testing CP violation in $P^0 \rightarrow \mu \bar{\mu}$ decays was first pointed out by Pais and Treiman where P^0 is a pseudoscalar meson. For $K_L \rightarrow \mu \bar{\mu}$ decay, the nonzero muon polarization can come from (1) indirect CP nonconservation induced by the mixing of K^0, \bar{K}^0 states which is characterized by ϵ and (2) direct CP-violating decay amplitude via the standard neutral-Higgs-boson exchange. Because of the smallness of $|\epsilon| \approx 2 \times 10^{-3}$ and $K_L \approx K_2 + eK_1$, where K_1 and K_2 are CP-even and -odd states, respectively, $|P_L|$ from (1) is expected to be quite small $\approx 7 \times 10^{-4}$. The contribution to $|P_L|$ from (2) has been studied recently by Botella and Lim and the present authors. It has been shown that in order to have large muon polarization a relatively light Higgs boson with the mass of order of 1 GeV/c^2 is required. However, the recent experimental searches at the CERN e$^+e^-$ collider LEPII have ruled out a Higgs-boson mass below 24 GeV/c^2. Accepting this limit we find that the muon polarization in the standard model is bounded by

$$|P_L(K_L \rightarrow \mu \bar{\mu})| \leq 10^{-3}$$ (1.1)

(see Ref. 13). Unlike the neutral-kaon system, the η meson is a CP eigenstate and thus the indirect type of CP-violating contributions does not exist. Furthermore no direct CP-violating contributions to $P_L(\eta \rightarrow \mu \bar{\mu})$ via the standard neutral Higgs boson can be induced up to two-loop level. Therefore, P_L in the $\eta \rightarrow \mu \bar{\mu}$ decay practically vanishes in the standard model.

We now briefly summarize the experimental situations involving the above CP-violating effects. Beginning with the charged-lepton EDM's, the current bound on d_e is given by

$$|d_e| < 1.3 \times 10^{-25} \ e \ cm,$$ (1.2)

which is extracted from the atomic experiments. An experiment which will improve the bound in (1.2) by several orders of magnitude is ongoing. For the EDM of muon, the $(g-2)$ experiment in CERN gives a bound

$$|d_\mu| < 7.3 \times 10^{-19} \ e \ cm,$$ (1.3)

This bound will be improved by a factor of 20 in a future BNL experiment. There have been two new measurements of $K_L \rightarrow \mu \bar{\mu}$ decay at KEK and BNL giving the branching ratios $(8.4 \pm 1.1) \times 10^{-9}$ and $(5.8 \pm 1) \times 10^{-9}$, respectively. Both results are lower than the previous value of $(9.5 \pm 2) \times 10^{-9}$. Taking an average of all these measurements we obtain

$$B(K_L \rightarrow \mu \bar{\mu}) = \frac{\Gamma(K_L \rightarrow \mu \bar{\mu})}{\Gamma(K_L \rightarrow \text{all})} = (7.34^{+0.71}_{-0.65}) \times 10^{-9},$$ (1.4)

which is close to the unitarity bound of

$$B(K_L \rightarrow \mu \bar{\mu})_{\gamma \gamma} = (6.83 \pm 0.28) \times 10^{-9}$$ (1.5)
arising from the two-photon intermediate-state contribution calculated from the measured branching ratio\(^{20}\) of \(B(K_L \to \gamma \gamma) = (5.70 \pm 0.23) \times 10^{-4}\). Using the data in (1.4) and (1.5), one finds\(^{22}\) that the experimental limit of \(P_L\) in \(K_L \to \mu \bar{\mu}\) decay is\(^{23}\)

\[
|P_L(K_L \to \mu \bar{\mu})| \leq 0.50. \tag{1.6}
\]

The experimental value for \(\eta \to \mu \bar{\mu}\) decay is\(^{20}\)

\[
B(\eta \to \mu \bar{\mu}) = (6.5 \pm 2.1) \times 10^{-6}, \tag{1.7}
\]

which is close to the unitarity bound \(B(\eta \to \mu \bar{\mu}) \gamma \geq 4.3 \times 10^{-6}\). This gives a limit of \(P_L(\eta \to \mu \bar{\mu}) \leq 1\) which is not very useful. However, a strong constraint\(^{24}\) of \(P_L(\eta \to \mu \bar{\mu}) \leq 0.1\) could come from the current limit on the EDM of the neutron\(^{25}\)

\[
|d_\eta| < 1.2 \times 10^{-25} \text{ e cm} \tag{1.8}
\]

albeit with some additional theoretical assumptions. This will be discussed in more detail in Sec. III. Future measurements of muon polarizations in both \(K_L \to \mu \bar{\mu}\) and \(\eta \to \mu \bar{\mu}\) decays will be quite interesting. At KEK, there are plans\(^{26}\) to measure \(P_L\) in \(K_L \to \mu \bar{\mu}\) decay with an accuracy of about 20% which is larger than the standard-model prediction given in (1.1). An experiment\(^{27}\) with \(\eta\) flux several orders of magnitude higher than previously available experiments, which can in principle measure \(P_L(\eta \to \mu \bar{\mu})\) to \(10^{-2}\) or better, is underway at Saclay. These recent developments have motivated us to study systematically the possible signature of the CP-violating effects in various existing extensions of the standard CP-violation model and examine how they are related to each other.

Recently, we have constructed extended Higgs-boson models\(^{5,28,29}\) with CP violation arising from the scalar-pseudoscalar mixing mechanism. We showed that this CP-violating source would lead to sizable muon polarizations in \(\eta K_L \to \mu \bar{\mu}\) decays and charged-lepton EDM’s. In this report, we will examine these leptonic CP-violating effects in this class of multi-Higgs-boson models as well as other CP-violation theories beyond the standard model, emphasizing the connections between the lepton EDM’s and the muon polarization effects. Especially, we will explore the possibility of having large \(P_L\) in both decays and \(d_\eta (l = e, \mu)\).

Our motivation is to investigate CP violation beyond the standard model, so we assume that a nonvanishing KM phase exists and one can account for CP violation in \(K \to \pi \pi\) decay via this phase and a heavy \(t\) quark through the Glashow-Iliopoulos-Maiani mechanism. The physics that we are trying to probe is additional to this source of CP violation.

The paper is organized as follows. In Sec. II we briefly review various CP-violation models which involve leptons. We then study the muon polarization asymmetry in \(\eta K_L \to \mu \bar{\mu}\) decays and the EDM of an electron and muon in Sec. III. Our conclusions are summarized in Sec. IV.

II. CP-VIOLATION MODELS INVOLVING LEPTONS

Although there is no experimental evidence so far to indicate that CP is not conserved in the lepton sector, it is widely speculated that the leptonic CP violation would exist if there is new physics beyond the standard model. Models with such CP violation have been constructed by introducing more fermions and/or scalar bosons, such as the multi-Higgs-boson, leptoquark, supersymmetry (SUSY), etc., models, or by enlarging the gauge group of the standard model such as the left-right-symmetric models, the horizontal-symmetry models, etc. In this section, we will review four classes of models which are relevant to our discussions on the EDM’s and \(P_L\). Since many models can be constructed within each class, we shall focus on the simplest one in each category. The emphasis is to bring out the physics involved without being overwhelmed by details of the models.

A. Multi-Higgs-boson models

In the standard model with three generations, observable CP-violating phenomena come from the W-boson–fermion coupling because of the existence of a physical phase in the KM matrix. Another source of CP violation can occur when CP symmetry is violated spontaneously with multi-Higgs bosons, which was first pointed out by Lee.\(^{30}\) In purely spontaneous CP violation (SCPV) models in which the Yukawa couplings are real, CP is assumed to be good prior to symmetry breakdown and CP violation is due to different relative phases of the vacuum expectation values (VEV’s) of Higgs fields. It was shown that in the context of the standard \(SU(3)_C \times SU(2)_L \times U(1)_Y\) model, two Higgs doublet are the minimal number required for SCPV to take place. This minimal two-Higgs-doublets model has flavor-changing neutral currents (FCNC) due to neutral-Higgs-boson exchange, which result in CP-violating \(\Delta S = 2\) superweak interaction at the tree level through scalar-pseudoscalar (R-I) mixing to the two doublets,\(^{30,31}\) where \(R\) and \(I\) represent the real and imaginary parts of the neutral scalars in the weak-eigenstate basis. The branching ratio of \(K_L \to \mu \bar{\mu}\) dictates that the spin-0 boson mediating the FCNC must be heavier than several TeV. It is doubtful that such a heavy particle makes theoretical sense in the theory. An alternative will be to suppress FCNC’s by symmetry consideration. To achieve this naturally, one imposes the principle of natural flavor conservation\(^{32}\) (NFC) in the Higgs sector. Unfortunately, NFC will automatically keep CP invariance after SSB because R-I mixing has been eliminated. With Higgs-doublet fields alone, it has been shown that the minimal model with SCPV and NFC is the Weinberg three-Higgs-doublet model\(^{33,34}\) in which flavor-changing neutral-Higgs-boson couplings are forbidden by a \(Z_2 \times Z_2\) discrete symmetry. With the additional doublets CP violation can then come from charged-Higgs-boson exchanges\(^{33}\) and/or neutral scalars of R-I mixings.\(^{35}\) If \(SU(3)_C \times SU(2)_L \times U(1)_Y\) Higgs-singlet fields are introduced, we have shown recently that the two Higgs doublets \((\phi_i, i = 1,2)\) and one Higgs singlet \((\chi)\) with a discrete symme-
try38 or two χ's with a Peccce-Quinn36 (PQ) $U(1)$ global symmetry can achieve SCPV and NFC simultaneously. This model has the virtue of reducing the number of Higgs fields. Furthermore, CP nonconservation is purely due to the R-I mixings between the components of the Higgs-doublet and Higgs-singlet fields.

In order to isolate CP violation arising from neutral-
Higgs-boson exchanges, i.e., R-I mixings, it is sufficient to study the simplest multi-Higgs-boson model. This is the one that contains two ϕ's and one χ. We will assume that the Yukawa couplings are complex and as a result the dominant observed CP violation in the kaon system is given by the phase in the KM matrix. In this model, there are a pair of physical charged Higgs bosons (H^{\pm}) and five physical neutral spin-0 fields H_k ($k = 1, 2, \ldots, 5$) after spontaneous symmetry breaking. The H^{\pm} fields carry the same KM phase as that of the W bosons in their couplings to the fermions37 and play a negligible role in the kaon system.38 The neutral scalar fields H_k will mix and the R-I mixing is the only new CP-violation source in this multi-Higgs-boson model. The weak eigenstates R_i and I_j and the mass eigenstates H_k are related by a real orthogonal transformation. This transformation mixes different real and imaginary components of the Higgs-
doublet and -singlet fields, and their coupling to fermions will then contain both scalar (1) and pseudoscalar ($i\gamma_5$) terms. The Lagrangian density of the Yukawa terms involving R_i, I_j has the expression

$$L_y = \frac{R_1}{v_1} \bar{u}M_u u - \frac{I_1}{v_1} \bar{u}M_u i\gamma_5 u + \frac{R_2}{v_2} (\bar{d}M_d d + \bar{e}M_e e) + \frac{I_2}{v_2} (\bar{d}M_d i\gamma_5 d + \bar{e}M_e i\gamma_5 e)$$

which, in terms of the mass eigenstates H_k, can be rewritten as

$$L_y = (2\sqrt{2}G_F)^{1/2} \sum_k \left[\alpha_k^2 \bar{u}M_u u + \beta_k^2 \bar{u}M_u i\gamma_5 u + \alpha_k^2 (\bar{d}M_d d + \bar{e}M_e e) + \beta_k^2 (\bar{d}M_d i\gamma_5 d + \bar{e}M_e i\gamma_5 e) \right] H_k,$$

where M_d, M_u, M_e are the fermion mass matrices for d- and u-type quarks and charged leptons, respectively, and v_i ($i = 1, 2$) are the VEV’s of the Higgs doublets ϕ_i. The mixing parameters α_k^2 and β_k^2 depend on the strength of R-I mixing and ratio of VEV’s. We assume that all these free parameters are of the same order of magnitude.

\subsection{B. Leptoquark}

We concentrate on a class of leptoquark models proposed by Hall and Randall.39 The models have been studied by Barr and Masiero40 (BM) and reexamined by one of us41 (C.Q.G.) recently. The quantum numbers of the scalar leptoquark ϕ are $(3, 2, \frac{1}{2})$ under the standard SU(3)$_c \times$SU(2)$_L \times$U(1)$_Y$ group. The general ϕ-fermion-
fermion couplings are given by

$$L = \sum_{i,j} \left(\lambda_{ij} \bar{u}_k e_i^j + \lambda_{ij} \bar{u}_k \bar{e}_i^j \right) \phi,$$

where $e_i^j (u_k^l)$ and $e_k^j (u_k^l)$ are left- and right-handed charged leptons (up-type quarks), respectively, and i, j are family indices. CP violation in these models comes from the complex coupling constants λ_{ij} and λ_{ij}. The couplings in (2.3) do not involve the down-type quarks and thus it has no impact on neutral-kaon decays at the tree level. It has been pointed out by BM40 that the experimental limit on $\mu\rightarrow e\gamma$ decay could give the strongest bound on d_γ. If we take the couplings as $|\lambda_{ij}| \sim (m_{e_i} m_{u_j})^{1/2} / M_\phi$, we find

$$M_\phi > 300 \text{ GeV}/c^2$$

from the current limit20 of

$$B(\mu \rightarrow e\gamma) < 5 \times 10^{-11}$$

on the $\mu \rightarrow e\gamma$ decay.

\subsection{C. SUSY models}

CP violation in SUSY theory has been studied as a test of effects beyond the standard model.42,43 There are many new CP-violating sources in addition to the standard KM phase. For example, in an $N=1$ supergravity model, in which the local SUSY is broken by a "hidden sector," the CP-violating phases can arise from the gaugino masses, the $\mu HH'$ terms in the superpotential, and soft SUSY-breaking terms. Although the new phases may not be all independent, there are many free parameters which model are dependent. As an example, we will concentrate our discussion on a special model inspired by superstring theory.44 The model is based on $E_8 \otimes E_8$ heterotic string in ten dimensions leading, upon compactification, to an observable four-dimensional E_6 grand unified theory coupled to $N=1$ supergravity.44 In order to establish our notation, we give the SO(10) content of the E_6 fundamental representation

$$16 = \left[\begin{array}{ccc} u & e & L \\ \bar{d} & \bar{d} & \bar{d} & \bar{d} & \\ H^+ & H^0 & \bar{H}^+ & \bar{H}^0 & \end{array} \right], \quad 10 = \left[\begin{array}{c} Q \\ d \\ u \\ e \\ \nu \end{array} \right], \quad 1 = N.$$

The matter fields transforms as the fundamental representation of E_6 and the most general cubic superpotential arising from the coupling of three 27-plets of E_6 can be written as

$$L = \sum_{i=1}^4 L_i,$$

\begin{align*}
L_1 &= \lambda^1 H u \phi + \lambda^2 Q d \phi + \lambda^3 L \bar{H} \phi + \lambda^4 \bar{H} \bar{H} N + \lambda^5 D^D N, \\
L_2 &= \lambda^6 D^u \phi + \lambda^7 D^d \bar{Q} + \lambda^8 D^d \phi + \lambda^9 D^u \phi + \\
L_3 &= \lambda^{10} D^L \phi + \lambda^{11} D^R \phi + \lambda^{12} H \phi, \\
L_4 &= \lambda^{13} H \phi,
\end{align*}

where the Yukawa couplings λ^k are tensors in generation
space. To avoid rapid proton decay and have naturally small neutrino masses generated through radiative corrections, one introduces a $Z_2 \times Z_3$ discrete symmetry to forbid L_3 and L_4 terms in (2.7).

D. Left-right-symmetric models

Left-right-symmetric models are based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ with the quantum numbers of quarks and leptons assigned as follows:

$$q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L = (2, 1, \frac{1}{2}), \quad q_R = \begin{pmatrix} u \\ d \end{pmatrix}_R = (1, 2, \frac{1}{2}),$$

$$l_L = \begin{pmatrix} \nu \\ e \end{pmatrix}_L = (2, 1, -1),$$

$$l_R = \begin{pmatrix} \nu \\ e \end{pmatrix}_R = (1, 2, -1).$$

CP violation in left-right models has been studied extensively in the literature. In contrast to the standard model, physical CP-violating phases can be introduced even for two generations of quarks because of the existence of right-handed currents. A two-generation version of such models can be regarded as an effective model in which CP violation from the third generation is negligible. The minimal left-right model contains one Higgs field Φ which transforms as a $(2,2,0)$ under the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. To achieve the correct symmetry-breaking pattern, other representations of Higgs fields such as triplets $\Delta_{L,R}$ are also required. These fields usually acquire large masses when $SU(2)_R$ is broken and as a result their contributions to CP-violation effects are negligible. Also, one can show that CP violations associated with the $\Phi(2,2,0)$ field are very small.

The charged-current interaction of quarks is given by

$$\mathcal{L}_{CC} = -\sum_i \frac{g_L}{\sqrt{2}} W^\mu_{L_I} l^\nu L \gamma^\mu U^\dagger_I d \bar{l} + \frac{g_R}{\sqrt{2}} W^\mu_{R_I} \gamma^\mu U^\dagger_I l \bar{d} + \text{H.c.},$$

where

$$U_L = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix},$$

$$U_R = e^{i\gamma} \begin{pmatrix} e^{-i\beta \sin \theta_C} & e^{-i\beta \sin \theta_C} \\ -e^{i\beta \cos \theta_C} & e^{i\beta \cos \theta_C} \end{pmatrix},$$

with θ_C being the Cabibbo angle. We recall that the left-right mixing of the model is given by

$$\xi = \eta \left(\frac{M_{W_L}}{M_{W_R}} \right)^2 \leq \left(\frac{M_{W_L}}{M_{W_R}} \right)^2 \leq 2 \times 10^{-3},$$

where $\eta = 2k/(k^2 + k'^2)$ and kk' are the VEV's of Φ. The bound on ξ in (2.11) comes from the constraint imposed by ΔM_K. For the lepton sector, the charged current can be written as

$$\mathcal{L}_{CC} = -\sum_i \frac{g_L}{\sqrt{2}} W^\mu_{L_I} l^\nu L \gamma^\mu U^\dagger_I d \bar{l} + \frac{g_R}{\sqrt{2}} W^\mu_{R_I} \gamma^\mu U^\dagger_I l \bar{d} + \text{H.c.},$$

where, for simplicity, the generation mixing of leptons are assumed to be zero. For each generation, there is a CP-violation phase because of the Majorana neutrino mass matrix

$$M_\nu = \begin{pmatrix} m \\ D \\ M \end{pmatrix},$$

where the mass m (M) and D are the left- (right)-handed Majorana and the Dirac terms, respectively, and $m \ll D \ll M$. Taking $m=0$, one can diagonalize M_ν by the unitary matrix

$$U = \begin{pmatrix} e^{-i\omega \cos \theta} & -e^{-\alpha \sin \theta} \\ e^{-i\alpha \sin \theta} & e^{-\omega \cos \theta} \end{pmatrix},$$

for each generation with $\tan 2\theta = 2D/M \ll 1$ and the light-neutrino mass is

$$m_{\nu_1} \approx \frac{D^2}{M},$$

as given by the "seesaw" mechanism. The phase convention reveals that all CP-violating processes in this model are associated with a right-handed gauge-boson W_R exchange. Thus, in the limit $M_{W_R} \rightarrow \infty$ the model is CP conserving as in the case of a two generation $SU(2)_L \times U(1)_Y$ model. However, it has been shown that the EDM's of leptons and muon polarization in $K_L \rightarrow \mu \nu$ are proportional to the mass term D which cannot be large in the simplest version of the models. This is because of the experimental constraints on m_{ν_1} and M in (2.15). Especially, d_1 and P_L vanish in the limit $m_{\nu_1} \rightarrow 0$. Recently, Frère and Liu have proposed an extension of the minimal left-right model by introducing one more neutrino S_L which is a singlet under the gauge group in each family with the neutrino mass matrix as

$$M_\nu = \begin{pmatrix} 0 & D & 0 \\ D & 0 & M \\ 0 & M & m' \end{pmatrix},$$

in the basis of (ν_L, ν_R, S_L). The light neutrino is then given by

$$m_{\nu_1} = \frac{m'D^2}{M^2},$$

for $m', D \ll M$. Thus the constraint on D is released when one chooses a small m'.
III. MUON POLARIZATION ASYMMETRY AND EDM'S

In $P^0 \rightarrow \mu\bar{\mu}$ decays, where P^0 denotes either the meson η or K_{L}, the muon polarization asymmetry is defined by

$$P_L = \frac{N_L - N_R}{N_L + N_R},$$

(3.1)

where N_L and N_R are the numbers of left-handed and right-handed outgoing muons, respectively. A nonvanishing P_L will be a clear indication of CP violation. The most general matrix element of the decays is given by

$$M = a\bar{u}\gamma_\nu v + b\bar{u}v,$$

(3.2)

where u and v denote spinor and antispinor for the outgoing muons. The width Γ of the decays is calculated to be

$$\Gamma = \frac{M_{\rho}\Gamma_0}{8\pi} (|a|^2 + r^2 |b|^2),$$

(3.3)

where $r^2 = (1 - 4m^2_\mu/M^2_{\rho})$. In terms of a and b polarization asymmetry P_L is given by

$$P_L = \frac{2r \text{Im}(ba^*)}{|a|^2 + r^2 |b|^2} = \frac{M_{\rho}r^2 \text{Im}(ba^*)}{4\pi \Gamma}.$$

(3.4)

As is well known, Γ is dominated by the two-photon intermediate state via the chain $P^0 \rightarrow \gamma\gamma \rightarrow \mu\bar{\mu}$. This two-photon amplitude is the main contribution to the imaginary part of Γ. If we write

$$a = a_{\gamma\gamma} + a_n,$$

(3.5a)

and

$$b = b_{\gamma\gamma} + b_n,$$

(3.5b)

where the subscripts $\gamma\gamma$ and n denote the two-photon and nonelectromagnetic contributions, respectively, one can argue that

$$|\text{Im} b_{\gamma\gamma}| \ll |\text{Im} a_{\gamma\gamma}|.$$

(3.6)

Thus, Eq. (3.4) can be rewritten as

$$P_L \approx -\frac{M_{\rho}r^2}{4\pi \Gamma} b_n \text{Im} a_{\gamma\gamma}.$$

(3.7)

The most general effective Lagrangian contributing to $P^0 \rightarrow \mu\bar{\mu}$ is

$$\mathcal{L}^\text{eff} = \sum_{i \leq j} \frac{G_F}{\sqrt{2}} \left[g_{\lambda\lambda}^{ij} A_{\lambda\lambda} J_{\lambda\lambda}^{ij} \bar{\mu} \gamma^\mu \gamma^\nu \gamma_{\lambda\lambda} s_{\mu} + g_{\rho\rho}^{ij} J_{\rho\rho}^{ij} \bar{\mu} \gamma_{\rho\rho} s_{\mu} + \ldots \right] + \text{H.c.},$$

(3.8)

where $i,j = 1,2$ and

$$J_{\lambda\lambda}^{ij} = \frac{1}{2} (\bar{u} \gamma_\mu \gamma_{\lambda\lambda} s_{\mu} + \bar{d} \gamma_\mu \gamma_{\lambda\lambda} d_{\mu}),$$

$$J_{\rho\rho}^{ij} = \frac{1}{2} (\bar{u} \gamma_\mu \gamma_{\lambda\lambda} s_{\mu} + \bar{d} \gamma_\mu \gamma_{\lambda\lambda} d_{\mu}),$$

(3.9)

$$J_{\rho\rho}^{ij} = \bar{s} \gamma_\mu \gamma_{\lambda\lambda} s, \quad J_{\rho\rho}^{ij} = \bar{s} \gamma_\mu \gamma_{\lambda\lambda} s,$$

$$J_{\lambda\lambda}^{ij} = \bar{s} \gamma_\mu \gamma_{\lambda\lambda} s, \quad J_{\lambda\lambda}^{ij} = \bar{s} \gamma_\mu \gamma_{\lambda\lambda} s.$$

Following the discussions in Refs. 11 and 24 and using the experimental values of $\Gamma(\eta, K_L \rightarrow \mu\bar{\mu})$ and $\Gamma(\eta, K_L \rightarrow 2\gamma)$, from Eqs. (3.7)–(3.9) we find that

$$|P_L(\eta \rightarrow \mu\bar{\mu})| \leq 2.34 |\text{Reg}_{SP}^{1L} - 4.3 \times 10^{-2} |\text{Reg}_{SP}^{2L}|,$$

(3.10)

and

$$|P_L(K_L \rightarrow \mu\bar{\mu})| \approx 3.26 \times 10^{\text{th}} |\text{Reg}_{SP}^{3L}|,$$

(3.11)

respectively. The ratio of (3.10) and (3.11) is

$$R \equiv \frac{|P_L(\eta \rightarrow \mu\bar{\mu})|}{|P_L(K_L \rightarrow \mu\bar{\mu})|} \approx 10^{-6} \left| \frac{\text{Reg}_{SP}^{1L} - 4.3 \times 10^{-2} |\text{Reg}_{SP}^{2L}|}{\text{Reg}_{SP}^{3L}} \right|.$$

(3.12)

In general $P_L(\eta \rightarrow \mu\bar{\mu})$ and $P_L(K_L \rightarrow \mu\bar{\mu})$ measure different g_{SP} that are associated with different quark currents.

Next we discuss the EDM of a fermion. A nonvanishing EDM signals a P- and T-violating interaction

$$if_p(k^2) \bar{\psi} \left[p + \frac{k}{2} \right] \sigma_{\mu\nu} k_{\mu\nu} \psi \left[p - \frac{k}{2} \right] A_{\mu}(k),$$

(3.13)

where A_{μ} is the electromagnetic field potential. The magnitude of the EDM is

$$d_{f} = f_{p}(0).$$

(3.14)

In gauge field theory, the EDM also implies CP violation by virtue of the CPT theorem. In a given model of CP violation one can calculate P_L and d_f in terms of the parameters of the model. In most cases the experimental limit achieved on neutron EDM's gives a stringent bound on the CP-violating parameters of a model. We can use this to set upper bounds on P_L as well as EDM's of leptons. Now we present the analysis for the models listed in Sec. II.

A. Multi-Higgs-boson models

In a recent Letter, we have emphasized some interesting physical implications of the neutral-Higgs-scalar exchanges in the multi-Higgs-boson models by assuming that spin-0 boson exchanges have little contribution to $K_L \rightarrow 2\pi$. For example, if the charged Higgs bosons are heavier than M_{H^\pm}, then their contributions to ϵ and ϵ' will be negligible. The standard-model results for the above CP-violation parameters will hold. Furthermore, the CP violation from neutral-Higgs-boson exchanges takes place at the two-loop level and thus $K_L \rightarrow 2\pi$ decays will not be a good probe of this CP-violation mechanism. On the other hand, a stringent constraint on the parameters of the model comes from the EDM of the neutron d_n, which would be induced from the following three dominant contributions: (a) the quark electric dipole moments arising from the one-loop graph shown in Fig. 1; (b) three- and four-gluon operators generated from the neutral-Higgs-boson exchange, i.e., $R-I$ mixing in Figs. 2(a) and 2(b), respectively; (c) the quark electric dipole moments coming from the typical two-loop diagram of Fig. 3.
In Ref. 5, we have concentrated only on contribution (a). It has been argued by Anselm, Bunakov, Godkov, and Uraltsev that for the Weinberg three-Higgs-doublets model, in which \(d_n \) arises also from the charged Higgs scalars, \(d_n \) from the four-gluon operator
\[
O_1 = C_1 G_{\mu\nu} G_{\alpha\beta}^{\mu} G_{\beta\gamma\alpha} G_{\gamma\delta\alpha} e^{\mu\nu\alpha\beta} \tag{3.15}
\]
generated from Fig. 2(b) is estimated to be \(10^{-22} \) \(\text{e cm} \) by assuming the \(R-I \) mixing parameters are the same order of magnitude as the charged one. However, the prediction depends on the Higgs-pseudoscalar coupling with the neutron which is proportional to
\[
\langle n | - \text{Tr}(e^{\mu\nu\rho} G_{\mu\nu} G_{\rho\alpha} | n \rangle \tag{3.16}
\]
by considering the recent European Muon Collaboration effect. The value of (3.16) can be consistent with zero although it is hard to do an exact calculation of this quantity. Thus, the four-gluon effect may be vanishing small. Recently, Weinberg has shown that a large contribution to \(d_n \) can arise from the three-gluon operator
\[
O_2 = - \frac{1}{4} C_2 f_{abc} G_{\mu\nu}^{a} G_{\rho\sigma\alpha} G_{\sigma\chi\alpha} e^{\mu\nu\alpha\beta} \tag{3.17}
\]
generated from Fig. 2(a), where \(f_{abc} \) is the totally antisymmetric SU(3) Gell-Mann structure constant. Again, the contribution from \(O_2 \) is uncertain to the extent that we cannot give a precise calculation of \(\langle n | O_2 | n \rangle \). We can only use naive dimensional analysis (NDA) as a guide. The factor \(C_2 \) in (3.17) can be calculated in QCD and the renormalization-group technique. In a recent report, Barr and Zee have pointed out that a class of two-loop graphs may also give a significant contribution to \(d_n \). These graphs have been neglected previously. Unlike Weinberg’s three-gluon operator, BZ’s graphs could also give a large contribution to \(d_n \). In the following, we first obtain constraints on \(R-I \) mixing based on the contributions to \(d_n \) from (a) the dimension-5 quark operator, (b) the three-gluon operator \(O_2 \), and (c) the typical two-loop graph involving a top-quark loop shown in Fig. 3 and then estimate the \(CP \)-violating effects.

The contribution to \(d_f \) (\(f = q, l \)) coming from \(R-I \) mixing at one loop depicted in Fig. 1 is given by
\[
d_f = Q_f \frac{e X_f}{4 \pi^2 M_W^2} \frac{m_f}{M_0} \left(\frac{m_f}{M_0} \right), \tag{3.18}
\]
where \(Q_f \) is the fermion charge and \(v = (\sqrt{2} G_F)^{1/2} \sim (2 v_F^{1/2} \sim (2 v_F^{1/2})^{1/2} \sim (2 v_F^{1/2})^{1/2} \). The parameter \(X_f \) is the product of \(\alpha_f \) and \(\beta_f \) for the lightest \(H_k \), denoted by \(H_0 \), whose mass is \(M_0 \), and would

\[FIG. 1. Feynman diagram for the fermion EDM due to scalar-pseudoscalar mixing at the one-loop level.\]

\[FIG. 2. Graphs contributing to (a) the three-gluon operator and (b) the four-gluon operator due to scalar-pseudoscalar mixing where wavy lines represent gluons.\]

\[FIG. 3. A representative diagram for the fermion EDM due to scalar-pseudoscalar mixing at the two-loop level.\]
I(Y) = \left(\frac{1}{Y^2} + \frac{1}{2Y^4} \ln Y^2 + \frac{\frac{1}{2} - 2Y^2}{2Y^4(1 - 4Y^2)^{1/2}} \right) \ln \frac{2Y^2}{1 - 2Y^2 - (1 - 4Y^2)^{1/2}}.

(3.19)

The neutron-EDM contribution from \(d_q \) in Eq. (3.17) is denoted by \(d_n^q \) and is explicitly given by

\[
d_n^q = \frac{4}{3} d_d - \frac{1}{3} d_u \sim \left(10^{-21} \text{ GeV}^4 \right) \frac{X}{M_0^{2/3}} \text{ e cm ,}
\]

(3.20)

where we have used \(m_u \sim 4.2 \text{ MeV} \), \(m_d \sim 7.5 \text{ MeV} \), and the assumption that all the \(X_i \)'s are of the same order, i.e., \(X \sim X_i \) and \(M_0 \) is given in units of GeV. Applying the current limit on \(d_n \) in (1.8), we find

\[
\frac{X}{M_0^{2/3}} < 1.2 \times 10^{-4} \text{ GeV}^4.
\]

(3.21)

For the three-gluon operator effect, the value of \(C_2 \) in (3.17) calculated from the graphs in Fig. 2(a) has the form

\[
C_2 = \frac{\xi X}{4\pi v^2} h \left(m_e^2/M_0^2 \right),
\]

(3.22)

where

\[
\xi = \left[g_s(\mu)/g_s(\lambda) \right]^{-108/23} = 9.2 \times 10^{-5}
\]

and \(h(Y) \sim \frac{1}{Y} \) and \(h(Y) \sim \frac{1}{Y} \ln Y \) for \(Y \gg 1 \) and \(Y \ll 1 \), respectively. The EDM of the electron induced by \(O_2 \) denoted by \(d_e^q \) can be expressed as

\[
d_e^q \sim \frac{e\xi X}{16\pi^2 v^2} h \left(m_e^2/M_0^2 \right)
\]

(3.23)

with the use of NDA, where \(M = 2\pi F_\pi \approx 1190 \text{ MeV} \) is the chiral-symmetry-breaking scale. Assuming \(m_i \gg M_0 \) and using Eqs. (1.8) and (3.23) and the value of \(\xi \) we find that

\[
\frac{X}{M_0^{2/3}} < 7 \times 10^{-5} \text{ GeV}^{-4}
\]

(3.24)

for \(M_0 \sim 1 \text{ GeV} \). It is clear that these limits should be taken as a guide only. There are too many theoretical uncertainties involving QCD as well as hadronic matrix elements to warrant taking them seriously. We now consider the two-loop graph in Fig. 3. For \(m_i \gg M_0 \), the EDM of the neutron arising from this two-loop diagram is given by

\[
d_n^q \sim \frac{4}{3} d_d \sim 3 \times 10^{-22} \left(\ln \frac{m_e^2}{M_0^2} + 2 \right) \frac{X}{v^2} \text{ e cm}
\]

(3.25)

which leads to

\[
\frac{X}{M_0^{2/3}} < 4 \times 10^{-5} \text{ GeV}^{-4}
\]

(3.26)

for \(M_0 \sim 1 \text{ GeV} \). The bounds in Eqs. (3.21), (3.24), and (3.26) are of the same order of magnitude. Henceforth, we shall use the stronger bound given by (3.26) for estimating other CP-violating effects.

With the limit on CP-violation parameters established we can calculate the upper bound on the lepton EDM's. The contributions to \(d_l \) from Figs. 1 and 3 give

\[
d_l^q = \frac{eXm_l^3}{4\pi^2 M_0^{2/3}} I \left(\frac{m_l}{M_0} \right),
\]

(3.27)

where \(I(Y) \) is defined by Eq. (3.19) and

\[
d_l^q \approx \frac{5eXm_l^3}{72\pi^2 v^2} \left(\ln \frac{m_l^2}{M_0^2} + 2 \right),
\]

(3.28)

respectively. Thus we obtain

\[
d_e = d_e^q + d_e^\pi \sim 7 \times 10^{-26} \text{ e cm ,}
\]

(3.29a)

and

\[
d_\mu = d_\mu^q + d_\mu^\pi < 10^{-22} \text{ e cm .}
\]

(3.29b)

It is interesting to note that the ratio of the EDM of the electron and muon in Eq. (29), i.e., \(d_e/d_\mu \approx 7 \times 10^{-4} \), is much larger than the value of \(d_e^q/d_\mu^q \approx (m_e/m_\mu)^3 \sim 10^{-7} \), predicted by the one-loop graph in Fig. 1.

We now study the muon polarization in \(\eta_\to\mu\bar{\mu} \) decays. The contributions to \(P_\eta(\eta_\to\mu\bar{\mu}) \) and \(P_\eta(\eta_\to\mu\bar{\mu}) \) due to the neutral-scalar exchanges arise from the tree-level and one-loop graphs in Fig. 4, respectively. We estimate that

\[
S_{\eta\to\mu\bar{\mu}} \sim \frac{4m_d m_\mu X}{M_0^2}
\]

(3.30a)

and

\[
S_{\eta\to\mu\bar{\mu}} \sim \frac{4m_\mu X}{M_0^2}
\]

(3.30b)

from Fig. 4(a) and

\[
S_{\eta\to\mu\bar{\mu}} \sim \frac{X m_\mu m_\tau^2}{4\pi^2 M_0^{2/3}} f \left(\frac{m_\tau^2}{M_\tau^2} \right) \sin \theta_C
\]

(3.30c)

from Fig. 4(b), where \(f \left(\frac{m_\tau^2}{M_\tau^2} \right) \sim 1 \) and we have neglected the contribution from the KM phase. From

\[
\theta_C
\]

FIG. 4. Contribution to \(P_\eta \) in (a) \(\eta_\to\mu\bar{\mu} \) and (b) \(K_L \to\mu\bar{\mu} \) decays due to scalar-pseudoscalar mixing.
Eqs. (3.12) and (3.30), we find
\[R \approx 0.2 . \]
(3.31)

With the bound in (3.26), from Eqs. (3.10), (3.11), and (3.30) we get
\[|P_L(\eta \rightarrow \mu \bar{\mu})| < 0.3 \times 10^{-2} \]
(3.32a)
and
\[|P_L(K_L \rightarrow \mu \bar{\mu})| < 1.4 \times 10^{-2} . \]
(3.32b)

We emphasize here that the polarization effects in (3.32) depend on the bound in (3.26) which holds only for \(M_0 \approx 1 \) GeV. Obviously, for a larger \(M_0 \), \(P_L^s \)'s in (3.32) will be smaller but \(d_n \) and \(d_{e,\mu} \) can still be large.58

B. Leptoquark model

In this model, there is no tree-level contribution to \(K_L \rightarrow \mu \bar{\mu} \) decay because of no down quarks and leptoquark couplings in (2.3). The one-loop box diagram shown in Fig. 5 that contributes to the decay amplitude does not induce a \(g_{SP} \) term. Thus, \(P_L \) in \(K_L \rightarrow \mu \bar{\mu} \) decay cannot arise from the leptoquark interaction in (2.3). On the other hand, the contribution to \(\eta \rightarrow \mu \bar{\mu} \) decay can proceed at the tree level and the Feynman diagram depicting this is shown in Fig. 6. The effective interaction that contributes to \(g_{SP} \) is given by
\[\mathcal{L}_{eff} = -\frac{G_F}{\sqrt{2}} g_{SP} \bar{\mu} \gamma^5 u \mu \bar{\mu} , \]
(3.33)
where
\[g_{SP} = \frac{v^2 \text{Im}(\lambda_{12} \lambda_{12}^*)}{2 M_\phi^2} . \]
(3.34)

This is straightforwardly derived from the leptoquark couplings in (2.3). From (3.10) we find that the muon polarization is
\[|P_L(\eta \rightarrow \mu^+ \mu^-)| \lesssim 1.5 \times 10^{-5} \left| \frac{\text{Im}(\lambda_{12} \lambda_{12}^*)}{2 M_\phi^2} \right| \text{ GeV}^2 . \]
(3.35)

If we take
\[\text{Im}(\lambda_{ij} \lambda_{ij}^*) \approx \frac{m_{\mu} m_{e_i}}{2 M_\phi^2} , \]
(3.36)
one obtains
\[|P_L(\eta \rightarrow \mu^+ \mu^-)| \lesssim 10^{-8} , \]
(3.37)
by using (3.35) and the constraint on \(M_\phi \) in (2.4). Obviously, such a muon polarization is far below an experimentally detectable level.

The EDM of the electron has been studied by BM.40 We will summarize their result and evaluate \(d_\mu \) which they did not do. The relevant Feynman diagrams are depicted in Fig. 7. These one-loop diagrams lead to
\[d_i \sim \frac{e}{24 \pi^2} \sum_j \text{Im}(\lambda_{ij} \lambda_{ij}^*) \left(\frac{11}{4} + \ln \frac{m_{\mu}^2}{M_\phi^2} \right) , \]
(3.38)
where \(i = e \) and \(\mu \) for \(j = 1 \) and 2, respectively. With the couplings in (3.36), the dominant contribution to \(d_i \) comes from the t quark which gives
\[d_i \sim \frac{e}{24 \pi^2} \frac{m_{t} m_{\mu}}{M_\phi^2} \left(\frac{11}{4} + \ln \frac{m_{\mu}^2}{M_\phi^2} \right) . \]
(3.39)

Taking \(m_t \sim 100 \text{ GeV}/c^2 \), one finds
\[d_e < 3 \times 10^{-26} \text{ e cm} \]
(3.40a)
and
\[d_\mu = m_{\mu} d_e < 6 \times 10^{-24} \text{ e cm} . \]
(3.40b)

Notice that this type of model gives the scaling

\[\frac{d_\mu}{d_e} \sim \frac{m_{\mu}}{m_e} . \]

FIG. 5. One-loop contribution to \(K_L \rightarrow \mu \bar{\mu} \) decay due to the leptoquark interaction.

FIG. 6. Contribution to \(P_L(\eta \rightarrow \mu \bar{\mu}) \) due to the leptoquark interaction.

FIG. 7. Feynman diagrams for lepton electric dipole moment, where \(l = e \) and \(\mu \) due to the leptoquark interaction.
C. SUSY models

For the minimal standard CP-violation SUSY model in which only the complex KM phase is considered, it has been shown that the muon polarization in $K_L \to \mu\bar{\mu}$ decay can arise from one-loop diagrams (cf. Fig. 8) involving superparticles exchanges and this gives $P_L \lesssim 10^{-3}$, i.e., at best it is of the same order as that given by the standard model. Furthermore, d_1 vanishes at the two-loop level and as a result, it is expected to be very small and takes place only at three loops.

In the superstring-inspired model described in Sec. II, apart from the ordinary and superparticles, there are leptoquark-like exotic heavy particles D and D' which couple to both up and down quarks differentially from the previously considered non-SUSY leptoquark model. The CP violation involving these exotics has been examined by several authors. The muon polarization in $K_L \to \mu\bar{\mu}$ decay can arise from one-loop diagrams that are not contained in the set dictated by the minimal standard CP-violating SUSY model. A typical graph that contributes to P_L through intermediate charged gaugino, squark, and D exchanges is shown in Fig. 9. One estimates that

$$g_{\tilde{g}p}^{21} \sim \frac{1}{12\pi^2} |\lambda_{2q}\lambda_{22}| \frac{m_\mu M_\mu}{M^4} \sin\theta_C \sin\delta,$$

(3.41)

where the lower indices of λ stand for generations, θ_C is the Cabibbo angle arising from the $\tilde{W} - d_L \tilde{c}_L$ vertex, δ is a combination of CP-violating phases in the diagram, and M is the mass parameter for all the exotic particles. (Here all unknown masses are assumed to be the same which is sufficient for an estimate.) Using Eqs. (3.11), we get

$$|P_L(K_L \to \mu\bar{\mu})| \sim 7 \times 10^{-2} |\lambda_{22}|^2 \sin\delta,$$

(3.42)

where we explicitly take the scale $M \sim 100 \text{ GeV}/c^2$ and $\lambda^{8} \sim \lambda^{7} \sim \lambda$. Similar to the discussions in the leptoquark model, the upper limit of the couplings λ can be extracted from $\mu \rightarrow e\gamma$ decay and one finds from Eq. (2.5) that

$$|\lambda_{12}\lambda_{22}| < 2 \times 10^{-7}.$$

(3.43)

If one takes $\lambda_{12} \sim \lambda_{22}$ or $|\lambda_{12}|^2 \sim |\lambda_{22}|^2 < 2 \times 10^{-7}$, one finds

$$|P_L(K_L \to \mu\bar{\mu})| < 1.4 \times 10^{-8} \sin\delta$$

(3.44)

which is vanishingly small. The diagram in Fig. 9 also gives the contribution to P_L in the $\eta \to \mu \bar{\mu}$ decay if we replace $d(s)$ by $s'(d)$. We expect that

$$g_{\tilde{g}p}^{11} \sim g_{\tilde{g}p}^{21} \sin\theta_C,$$

$$g_{\tilde{g}p}^{22} \sim g_{\tilde{g}p}^{21} \sin\theta_C,$$

(3.45)

and thus

$$|P_L(\eta \to \mu\bar{\mu})| \lesssim 2.5 \times 10^{-8} |P_L(K_L \to \mu\bar{\mu})| \lesssim 10^{-8},$$

(3.46)

where \Box stands for the loop contributions. On the other hand, the tree contribution similar to (3.35) is given by

$$|P_L(\eta \to \mu\bar{\mu})|_{\text{tree}} \lesssim 0.4|\frac{B(\mu \to e\gamma)}{\lambda_{12}}|^{-1/2} < 3 \times 10^{-6}$$

(3.47)

with $\lambda_{12} \sim \lambda_{22}$. Here, the bound in (3.47) is more general than that in (3.37) where special couplings have been assumed in (3.36). We thus see that it is impossible to have large muon polarization in $\eta \to \mu\bar{\mu}$ decay because of the bound on the $\mu \rightarrow e \gamma$ decay of $P_L(K_L \to \mu\bar{\mu})$.

However, large muon polarization in $K_L \to \mu\bar{\mu}$ decay is possible if the constraint from the $\mu \rightarrow e \gamma$ decay can be evaded. This can be achieved if the coupling λ_{12} is small. In fact, λ_{12} can naturally be zero if some discrete or global family-type symmetries are imposed on the model. If $\lambda_{12} \sim 0$ because of such symmetries then the constraint from (3.43) disappears and λ_{22} can be ~ 1. This in turn gives

$$|P_L(K_L \to \mu\bar{\mu})| \lesssim 7\%$$

(3.48)

from (3.42).

As for the lepton EDM's, we need only study the vanishing λ_{12} case and we find

$$d_e \sim \frac{e}{24\pi^2} \left|\lambda_{12}\right|^2 \frac{m_\mu}{M^2} \left[\frac{11}{4} + \ln \frac{m_\mu^2}{M^2} \right].$$

(3.49)
Since there is no constraint on λ_{11} we expect d_μ can be as large as 10^{-25} e cm which requires $|\lambda_{11}|^2 \sim 1.4 \times 10^{-4}$. The muon EDM is similarly estimated to be

$$d_\mu = c \frac{m_e}{m_u} d_e,$$

(3.50a)

where

$$c = |\lambda_{22}/\lambda_{11}|^2 \left[\frac{11}{4} + \ln \frac{m_e^2}{M^2} \right] \left[\frac{11}{4} + \ln \frac{m_u^2}{M^2} \right].$$

(3.50b)

It is easy to see that

$$d_\mu \sim 6 \times 10^{-20} \text{ e cm}$$

for $\lambda_{22} \sim 1$.

D. Left-right-symmetric models

In contrast with the standard KM model in which the lepton EMS's start appearing at the three-loop level, the left-right models allow one-loop contributions to d_μ if neutrino masses are nonzero.\(^{49,50,68}\) The diagram depicting this is shown in Fig. 10. Most of the studies in the literature have concentrated on the EDM of the electron\(^{49,50}\), which is estimated to lie in the range 10^{-24} to 10^{-25} e cm. This is because the mixings between the lepton generations are unknown. For vanishing mixings, the discussion on d_μ will follow as that of d_e directly. Calculation of $P_L(K_L \to \mu \bar{\nu})$ in the simple left-right-symmetric models was first considered by Chang and Mohapatra\(^{51}\) who estimate it to be in the range 10^{-2} to 10^{-3}. However, the predictions on d_i and P_L depend sensitively on the values of neutrino masses chosen. For example, by assuming no arbitrary fine-tuning among the parameters in the neutrino mass matrix, Liu\(^{50,52}\) showed that d_s and $P_L(K_L \to \mu \bar{\nu})$ are less than 10^{-26} e cm and 10^{-3}, respectively. The constraints from the neutrino masses become minimal in the extension of the simple left-right models by Ref. 53. They have shown that both d_s and $P_L(K_L \to \mu \bar{\nu})$ can be large with small or even vanishing neutrino masses. Specifically, they find from Fig. 10 that

$$d_e \sim \frac{G_F}{2\sqrt{2}\pi^2} e D_1 \frac{\sin \alpha_f}{M_W^2/M_W^2}$$

(3.51)

with $M_W^2 \gg M_W^2$ and $g_L = g_R$, where $f(Y)$ is a smooth function varying from 1 to 0.25. For $D_1 \sim 10$ MeV, Eqs. (3.51) and (2.11) give $d_e \leq 10^{-25}$ e cm. For the calculation of $P_L(K_L \to \mu \bar{\nu})$, the dominant contribution arises from the left-right box diagram shown in Fig. 11 with d_μ and d_ν being d and s quarks, respectively, which leads to

$$g_{31}^{E2} \sim \frac{G_F}{2\sqrt{2}\pi^2} e D_1 \frac{\sin \alpha_3}{M_W^2/M_W^2} \times \left(\frac{M_W^2}{M_2^2} \right)^2 \frac{1}{\ln \frac{M_2^2}{M_W^2}}$$

(3.52)

by assuming $M_2 \gg M_W^2$ and $g_L = g_R$ and ignoring the phases in the quark sector. Taking $M_2 \sim M_W^2 \sim 1$ TeV and $D_2 \sim 100$ GeV, one expects

$$P_L(K_L \to \mu \bar{\nu}) \lesssim 0.02.$$

(3.53)

We now extend the discussions to the muon EDM and polarization on $\eta \to \mu \bar{\nu}$ decay. The contributions to $P_L(\eta \to \mu \bar{\nu})$ can be obtained from the graph in Fig. 11 by substituting the d or s quark for d_i which is the case shown in the SUSY models. It is straightforward to show that the relations in (3.45) hold with g_3^{E2} now given by Eq. (3.52). Therefore, from (3.46) we find

$$P_L(\eta \to \mu \bar{\nu}) \lesssim 10^{-8}.$$

(3.54)

By analogy with the derivation of d_e in Eq. (3.51), we obtain the EDM of muon as

$$d_\mu \sim \frac{G_F}{2\sqrt{2}\pi^2} e D_1 \frac{\sin \alpha_3}{M_W^2/M_W^2} \times \frac{D_1}{D_1} \sin \alpha_1 d_e$$

$$\lesssim 10^{-3} \text{ e cm}.$$

(3.55)

from Fig. 10 with $l = \mu$. Here we do not have a relation between d_μ/d_e and m_μ/m_e unless the masses of the Dirac neutrinos and charged leptons are related.

IV. CONCLUSIONS

We have studied the longitudinal muon polarization in $\eta \to \mu \bar{\nu}$ and $K_L \to \mu \bar{\nu}$ decays and the electric dipole moment of an electron and muon in various extensions of the standard KM CP-violation model. In the multi-Higgs-boson models, the upper bounds in P_L in $\eta \to \mu \bar{\nu}$ and $K_L \to \mu \bar{\nu}$ decays are estimated to be $< 0.3 \times 10^{-2}$ and
1.4 \times 10^{-2}$, respectively, which are accessible to the planned experiments in Saclay and KEK, and the EDM’s of the electron muon are found to be $< 7 \times 10^{-26}$ and 10^{-22} e cm, respectively. The leptoquark model gives vanishingly small P_L in both decays and $d_L < 3 \times 10^{-26}$ and 6×10^{-24} e cm for $l = e$ and μ, respectively. In the SUSY model, $P_L(K_L \to \mu \mu)$ can be up to 0.07, whereas $P_L(\eta \to \mu \mu)$ is expected to be $< 10^{-6}$. The main constraint here is due to the experimental bounds of the value of $P_L(K_L \to \mu \mu)$ in (1.6) or the branching ratio of $\mu \to e\gamma$. The electron EDM can be as large as the present experimental limit while d_{μ} is estimated to be in the order of 10^{-20} e cm which is within the measurable range of the approved BNL experiment. The results in the light-right-symmetric model are that $P_L(\eta, K_L \to \mu \mu) \leq 10^{-8}$, 0.02, and $d_{e,\mu} < 10^{-25}$, 10^{-21}$ e cm, respectively, which are similar to those in the SUSY model.

In conclusion, the muon polarization asymmetry in $K_L \to \mu \mu$ decay is accessible to the experiments in most of the CP-violating gauge theories beyond the standard model, whereas P_L in $\eta \to \mu \mu$ decay is a good probe of CP violation in the multi-Higgs-boson models. The electron and muon EDMs are within the ranges $10^{-25} - 10^{-26}$ and $10^{-20} - 10^{-22}$ e cm, respectively, which are hard to get as may be within reach in the not too distant future. Measurement of the EMD of the electron or muon, especially the ratio of d_{μ}/d_{ν}, will be a powerful tool for distinguishing between the various CP-violating mechanisms. Furthermore, since d_{μ} are free of QCD uncertainties such as the strong θ parameter and the gluon operators in (3.15) and (3.17), they will be of great importance for studying purely electroweak source of CP violation.

Note added. After the completion of this paper we received three papers: (1) by X. He and B. McKellar [Melbourne Report No. UM-90-09 (unpublished)]; (2) by J. Gunion and D. Wyler [Santa Barbara Report No. NSF-ITP-90-109 (unpublished)]; and (3) by D. Chang, W. Keung, and T. Yuan [Northwestern Report No. NUHEP-TH-90-22 (unpublished)], respectively, where (1) dealt with $\eta \to \mu \mu$ and d_{μ} (2) and (3) studied the chromo-EDM of the light quarks via the BZ's two-loop mechanism. From (2) and (3), we find that d_{μ} is about four times larger than the value of d_{μ} in Eq. (3.25) for $m_\mu > M_{\eta} \sim 1$ GeV. However, since the estimate of d_{μ} from the gluonic two-loop mechanism is more uncertain than the photonic one due to the low-energy hadronic physics, the orders of magnitude for the CP violating effects estimated in the text will not change. We thank the authors for sending their work to us before publication.

ACKNOWLEDGMENTS

We thank Dr. J. Liu for useful discussions. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

*Present address: Nucl. Phys. Lab., Université de Montréal, Montréal, Québec, Canada H3C 3J7.
4For recent reviews on lepton electric dipole moments, see H. Y. Cheng, Phys. Rev. D 28, 150 (1983); S. Barr and W. Marciano, in CP Violation (Ref. 3).
13Geng and Ng (Ref. 5); Phys. Rev. D 39, 3330 (1989).
23The upper bound on P_L in (1.6) is less than the value given in Refs. 11 and 13 due to our use of the recent measurement values.
29C. Q. Geng, X. D. Jiang, and J. N. Ng, Phys. Rev. D 38, 1628
There is no physical phase arising from the charged Higgs field themselves for models which contain only two Higgs doublets with natural flavor conservation. Also see G. C. Branco, A. J. Buras, and J.-M. Gerard, Nucl. Phys. B259, 306 (1985).

38. Here the neutral-scalar contributions to the CP-violating effect in the $K^0 - \bar{K}^0$ mass difference, which arise from the two-loop diagrams, are discussed in Refs. 28 and 29 for models discussed there. These are small for v_1 / v_2.

47. For a recent review, see R. N. Mohapatra, in CP Violation (Ref. 3).

55. The neutron EDM can also be induced by the strong QCD θ-term contribution which may be larger than that by the direct weak loop in Fig. 1 [cf. J. Liu, C. Q. Geng, and J. N. Ng, Phys. Rev. Lett. 63, 589 (1989)]. However, it can be avoided by introducing PQ symmetry in the theory as the two-Higgs-doublet and -singlet model in Ref. 29 in which θ is a small but calculable parameter.

63. The value $\xi = 50$ in Ref. 56 has been changed in 9.2×10^{-5} due to a sign error in the original calculation. See E. Braaten, C. S. Li, and T. C. Yuan, Phys. Rev. Lett. 64, 1709 (1990).

