Determination of the three-dimensional lattice mismatch in quaternary III-V liquid phase epitaxial layers using simultaneous Bragg diffraction of x rays

Shih-Lin Chang
Instituto de Física "Gleb Wataghin," Universidade Estadual de Campinas, 13100 Campinas, S.P. Brasil

(Received 16 June 1980; accepted for publication 15 August 1980)

Because multiple simultaneous reflection of x rays is very sensitive to lattice deformation, the six-beam, (000) [006] (224) [222] (224) [222] multiple reflection was used to record simultaneously the information about the lattice mismatch of [001] InGaAsP materials using a divergent x-ray source. The lattice mismatches in directions parallel and perpendicular to [001], determined from a single divergent-beam photograph, increase as the As concentration in liquid composition increases. The procedure was used without difficulty for X'_{Ga} as low as 0.0007 and X'_{As} in the range 0.006–0.01.

PACS numbers: 68.55. + b, 61.10.Fr

Uneven liquid phase epitaxial (LPE) layer surfaces usually cause unfavorable increases in threshold current density and optical scattering loss of double-heterojunction (DH) lasers, and efforts have been made to improve surface morphology. Recently Prince et al. reported that the improvements of the surface morphology of the InGaAsP DH laser system by adding small amounts of Ga and As in the layers confining the active region made possible the fabrication of good-quality wafers with low threshold current density and high yield. In the course of crystal growth of these small-x quaternary-compound layers have tetragonal unit cells. The corresponding six reciprocal lattice points can then no longer be brought simultaneously onto the surface of the Ewald sphere. Instead, only four points, either [(000) (224) (222) (222), occurs when the crystal is first placed in position for (006) reflection and is then rotated around the normal to (006) to bring [110] to the plane of incidence (Fig. 1). These six reciprocal lattice points remain on the Ewald sphere and diffract simultaneously. Interactions among them, within the crystal, give rise to variations in the (006) reflected intensity. In Fig. 1, θ_{a} and ϕ are the Bragg angle of the (006) reflection and the azimuthal angle of rotation, respectively, and β is the angle between the plane of incidence and the plane containing the six reciprocal lattice points. Owing to small differences between a_{1} and a_{2}, InGaAsP quaternary-compound layers have tetragonal unit cells. The corresponding six reciprocal lattice points can then no longer be brought simultaneously onto the surface of the Ewald sphere. Instead, only four points, either [(006) (224) (222)] (set 1) or [(006) (224) (222)] (set 2) can enter or leave the Ewald sphere together. The six-beam multiple reflection for a cubic system is then decomposed into two four-beam cases for a tetragonal. One four-beam set, say set 1, enters just after the other, set 2, leaves the Ewald sphere. The ordering of the sequence is reversed after $\beta = 90^\circ$, when set 1 leaves just after set 2 enters the Ewald sphere. Therefore the angle β has the same value but a different sign for the two cases of four-beam reflection. The corre-
Ssponding azimuths ϕ are then equal to $\beta - 90^\circ$ and $90^\circ + \beta$, respectively. This is illustrated in Fig. 2 for $\Delta a_y = 0$.

According to Cole et al., 1 β for a tetragonal system can be calculated as

$$\cos\beta = \left(\frac{h^2 + k^2}{a_{||}^2} + \frac{l^2 - L L}{a_{\perp}^2} \right) \times 2 \left(\frac{h^2 + k^2}{a_{||}^2} \right)^{1/2} \left(\frac{1}{\lambda^2} - \frac{L^2}{4a_{\perp}^2} \right)^{1/2}$$

(1)

if the rotation axis is [00L] and the additional reflection is (hkl). λ is the wavelength of the x-ray used. For InP $(a_{\|} = a_1)$ and Cu $K\alpha_1$ radiation, β is 90°. For the quaternary layer, the deviation $\Delta \beta$ from 90° can be obtained as

$$\Delta \beta = \left[(h^2 + k^2) \Delta a_y + (l^2 - L L) \Delta a_1 \right]$$

$$\times a_1 (h^2 + k^2)^{1/2} \left(\frac{1}{\lambda^2} - \frac{L^2}{4a_{\perp}^2} \right)^{1/2},$$

(2)

where a_1 is 5.8696 Å for InP. For these particular four-beam cases,

$$\Delta \beta = 0.205(\Delta a_y - \Delta a_1),$$

(3)

where Δa_1 and $\Delta \beta$ can be determined by $\Delta a_y / a_1$. Δa_y for various X_{As}, where $X_{As} = 0.000 69$.

It is known that a_1 varies continuously along the interface normal. A broad reflection band is common for the quaternary layer. Δa_1 and Δa_y were determined by measuring $\Delta \beta$ and $\Delta \theta$ at the middle of the reflection band from the enlarged $(\times 10)$ images of the original divergent-beam photographs. In Fig. 5, the measured Δa_1 and Δa_y are given as functions of X_{As} with $X_{As} = 0.00069$. They resemble the curves obtained by Oe et al. 8 for X_{As} and X_{Ga} one order of magnitude higher. The errors indicated here were estimated from the widths of the reflection lines.

The above provides a method of determining Δa_1 and Δa_y from a single divergent-beam x-ray photograph using multiple reflection. Although the test of this method was made for confining quaternary layers with small x and y, it is applicable to any [001] InGaAsP quaternary layer with different x and y. However, for [111] oriented quaternary mate-
High-temperature scanning cw laser-induced diffusion of arsenic and phosphorus in silicon

S. Matsumoto and J. F. Gibbons
Stanford Electronics Laboratories, Stanford, California 94305

V. Deline and C. A. Evans, Jr.
Charles Evans and Associates, San Mateo, California 94400

(Received 30 June 1980; accepted for publication 23 August 1980)

The diffusion of arsenic and phosphorus in silicon at temperatures near the melting point has been investigated by using a scanned cw laser. The intrinsic diffusion coefficients of arsenic and phosphorus obtained in this work agree well with the extrapolated values of intrinsic diffusion coefficients reported by others. Diffusion coefficients of arsenic under extrinsic conditions at temperatures over 1200 °C are found to depend linearly on the electron concentration. The validity of the analytical model for solid-phase reaction expressed in terms of an effective temperature and an effective time for the laser heat source is shown.

PACS numbers: 66.30.Jt

It has been shown that both pulsed and cw lasers can be used to recrystallize damage produced during ion implantation and to activate implanted dopants completely. In pulsed laser annealing, a liquid layer is thought to form during the annealing process and implanted dopants are then rapidly redistributed through the liquid layer. The redistribution of dopants has been explained using a model based on the diffusion of dopants in liquid silicon. On the other hand, the scanning cw laser can produce solid-phase recrystallization of the implanted layers, which yields no diffusion of implanted dopants during the annealing cycle. In this case, the dwell time of a single scan is on the order of 1 msec under typical scanning conditions, which is too short to cause the significant diffusion of implanted dopants.

In this letter, the diffusion of implanted arsenic and phosphorus in silicon has been investigated using multiple scans of a cw laser, which increases the equivalent dwell time substantially. By using roughly 1000 scan frames we obtain a total diffusion time on the order of 1 sec, which is then sufficient to produce easily measurable diffusion at temperatures in the vicinity of the melting point.

The theoretical basis for the experiments to be described here is contained in the analytical model for solid-phase reactions induced by scanning cw laser developed by Gold and Gibbons. These authors show that the effect of laser irradiation can be interpreted in terms of an "effective temperature" \(T_{\text{eff}} \) and an "effective time" \(t_{\text{eff}} \) even though the temperature in the laser annealing process is actually a function of time. This model can be applied to the laser-induced diffusion studies of this work by using the expression

\[
x^2 = D_0 t_{\text{eff}} \exp\left(-E_a/kT_{\text{eff}}\right),
\]

where \(x \) is the diffusion length, \(D_0 \) is the preexponential factor, and \(E_a \) is the activation energy of impurity for diffusion.

For the case of multiple overlapping scans (i.e., multiple scan frames), \(T_{\text{eff}} \) and \(t_{\text{eff}} \) are given by

\[
T_{\text{eff}} = T_{\text{max}} = T_b + (T_0 - T_b) \exp(P/2 \sqrt{\pi} w A),
\]

\[
t_{\text{eff}} = t_{\text{tot}} \left(\frac{\pi r_{\text{eff}}^2}{A_{\text{tot}}}\right),
\]

where \(T_{\text{max}} \) is the maximum temperature of the surface, \(T_b \) is the substrate backside temperature, \(P \) is the laser power, \(w \) is the Gaussian beam radius, \(T_0 \) and \(A \) are constants equal to 99 K and 299 W/cm, respectively, for silicon, \(t_{\text{tot}} \) is the total scan time, \(A_{\text{tot}} \) is the total scan area, and \(r_{\text{eff}} \) is the effective
