
MAXIMIZING MACROMOLECULE CRYSTAL SIZE FOR NEUTRON DIFFRACTION EXPERIMENTS
1Department of Physics, National Tsing Hua University, 2Synchrotron Radiation Research Center, Hsinchu, Taiwan, R.O.C.

A challenge in neutron diffraction experiments is growing large (greater than 1 cubic millimeter) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 Å. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.

Keywords: NEUTRON DIFFRACTION MACROMOLECULE CRYSTAL SIZE


X-RAY RESONANCE MULTI-BEAM DIFFRACTION: EXPERIMENTS AND THE PERTURBATIVE BETHE APPROXIMATION
Y.P. Stetsko1,2, G.Y. Lin1, Y.S. Huang1, C.H. Chao1, Y.R. Lee1, and S.-L. Chang2
1Department of Physics, National Tsing Hua University, 2Synchrotron Radiation Research Center, Hsinchu, Taiwan, R.O.C.

X-ray diffraction/scattering for atoms in excited states or under resonance conditions has currently been used to probe atomic and electronic structures of matter. In the case of multiple diffraction, at atomic absorption edges the effects of anomalous dispersion on multi-wave x-ray interference in crystals are interesting and important topics to investigate. In this paper, highly phase-sensitive profiles of the diffraction intensity ratios of two inversion-symmetry-related multiple diffractions near/at absorption edges (about 30 eV), exhibiting strong asymmetric characteristics, compared with those far from the edges, are experimentally and theoretically observed. The changing of asymmetry of these ratios results from the anomalous dispersion corrections in the structure factors due to the significant change of the resonance phase at the absorption edge. The excellent agreement between the experimental and theoretical results is obtained. The proposed resonance perturbation Bethe (RPB) approach allows for the determination of the phase shifts of x-ray reflection under resonance conditions as a function of photon energy. This provides a highly sensitive way for experimental investigation of the spectral distribution of reflection phase shift due to the resonance.

Keywords: RESONANCE, MULTI-BEAM, DIFFRACTION.