Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition

P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude
Agere Systems, 600 Mountain Avenue, Murray Hill, New Jersey 07974

(Received 8 August 2003; accepted 21 November 2003)

Recently, significant progress has been made on GaAs metal-oxide-semiconductor field-effect transistors (MOSFETs) using atomic-layer deposition (ALD)-grown Al₂O₃ as gate dielectric. We show here that further improvement can be achieved by inserting a thin In₀.₂Ga₀.₈As layer as part of the channel between Al₂O₃ and GaAs channel. A 1-μm-gate-length, depletion-mode, n-channel In₀.₂Ga₀.₈As/GaAs MOSFET with an Al₂O₃ gate oxide of 160 Å shows a gate leakage current density less than 10⁻³ A/cm², a maximum transconductance ~105 mS/mm, and a strong accumulation current at V gs > 0 in addition to buried-channel conduction. Together with longer gate-length devices, we deduce electron accumulation surface mobility for In₀.₂Ga₀.₈As as high as 660 cm²/V s at Al₂O₃/In₀.₂Ga₀.₈As interface. © 2004 American Institute of Physics. [DOI: 10.1063/1.1641527]

During the past few decades, there has been continued interest in GaAs-based metal-oxide-semiconductor field-effect transistors (MOSFETs). GaAs-based devices potentially have great advantages over Si-based devices for high-speed and high-power applications, in part from an electron mobility in GaAs that is ~5x greater than that in Si, the availability of semi-insulating GaAs substrates, and a higher breakdown field. Currently, the GaAs metal-semiconductor field-effect transistor (MESFET) is the dominant device for high-speed and microwave circuits. MESFETs feature gates formed by metal-semiconductor (Schottky barrier) junctions, while MOSFETs have oxide layers (higher barrier) between metals and semiconductors. Compared to GaAs MESFETs, GaAs MOSFETs feature a larger maximum drain current, much lower gate leakage current, a better noise margin, and much greater flexibility in digital integrated circuit design due to large gate voltage range. The main obstacle to GaAs-based MOSFET devices is the lack of high-quality, thermodynamically stable insulators on GaAs as gate dielectric that can match the device criteria similar to SiO₂ on Si. After a decade of effort, much progress has been made recently to form a high-quality oxide on III–V semiconductors, for example, atomic-layer deposition (ALD)-grown Al₂O₃ on III–V semiconductors, a marriage of Si technology to the III–V compound semiconductor field. In this letter, we report a GaAs-based MOSFET with an inserted In₀.₂Ga₀.₈As layer as part of the channel to explore the potential of better interface quality and surface mobility. The gate dielectric is Al₂O₃ grown by ALD, which is an ex situ, robust manufacturing process and commonly used throughout the Si industry. Al₂O₃ is a highly desirable gate dielectric with a high bandgap (~9 eV), a high breakdown field (5–10 MV/cm), a high dielectric constant (8.6–9), high thermal stability (up to at least 1000 °C), and it remains amorphous under typical processing conditions. Depletion-mode, n-channel In₀.₂Ga₀.₈As/GaAs MOSFETs show a low gate leakage current, good transconductance, and a strong accumulation current at V gs > 0. We ascribe this strong accumulation current at V gs > 0 to the improvement of oxide/channel interface or electron accumulation surface mobility by inserting an In₀.₂Ga₀.₈As layer. We use MOSFETs of different gate lengths to deduce the series resistance and obtain a high electron accumulation surface mobility of In₀.₂Ga₀.₈As at the Al₂O₃/In₀.₂Ga₀.₈As interface. A high surface mobility is an indication of interface quality and is critical for realization of enhancement-mode (surface inversion channel) and complementary GaAs MOSFETs.

Figure 1 shows the device structure of the fabricated, depletion-mode, n-channel Al₂O₃/In₀.₂Ga₀.₈As/GaAs MOSFET. A 1500 Å undoped GaAs buffer layer, a 140 Å Si-doped GaAs layer (2×10¹⁸/cm³), and a 135 Å Si-doped In₀.₂Ga₀.₈As layer (1×10¹⁹/cm³) were subsequently grown by molecular-beam epitaxy on a (100)-oriented semi-insulating 2 in. GaAs substrate. After the semiconductor epitaxial growth, the wafer was transferred ex situ to an ASM Pulsar2000™ ALD module. A 160-Å-thick Al₂O₃ oxide layer was deposited at a substrate temperature of 300 °C. A

*Electronic mail: peterye@agere.com
**Present address: ASM America, Phoenix, AZ 85034.
*Present address: Axcelis Technologies, Beverly, MA 01915.
post-deposition anneal was done at 550 °C for 60 s in an oxygen ambient. Device isolation was achieved by oxygen implantation. Activation annealing was performed at 450 °C in a helium gas ambient. Using a wet etch in diluted HF, the oxide on the source and drain regions was removed while the gate area was protected by photoresist. Ohmic contacts were formed by electron-beam deposition of Au/Ge/Au/Ni/Au and a lift-off process, followed by a 425 °C anneal in a forming-gas ambient. Finally, conventional Ti/Au metals were e-beam evaporated, followed by lift-off to form the gate electrodes. The process requires four levels of lithography (alignment, isolation, ohmic, and gate), all done using a contact printer. The source-to-gate and the drain-to-gate spacings are \(\sim 1.0 \) \(\mu \)m. The sheet resistance of the source/drain region outside the gate and its contact resistance are measured to be 1.5 kΩ\(\Box\) and 2.0 \(\Omega \)mm. The gate lengths of the measured devices are 0.65, 0.85, 1, 2, 4, 8, 20, and 40 \(\mu \)m. In order to reduce the error in extracting series resistance and mobility, we concentrate on the long-channel devices with gate lengths of 8, 20, and 40 \(\mu \)m to obtain surface mobilities.

Figure 2 shows the dc \(I−V \) curve of a MOSFET with a gate length \(L_g \) of 1 \(\mu \)m and a gate width \(W_g \) of 100 \(\mu \)m. The gate voltage is varied from \(-4.0\) to +3.0 V with 1.0 V step. The fabricated device has a pinch-off voltage of \(V_{gs} = +3.0 \) V, is \(\sim 330 \) mA/mm. The knee voltage is \(-1.0 \) V at \(V_{gs} = 0 \) V, due to the relatively high series resistance arising from this non-self-aligned process. Under those conditions, the gate leakage current is less than 100 pA, corresponding to \(<10^{-4} \) A/cm\(^2\). The gate leakage current for MOSFETs is more than three orders of magnitude lower than for MESFETs under similar bias. No noticeable \(I−V \) hysteresis is observed in the drain current in both forward and reverse gate-voltage sweep directions. This indicates that no significant mobile bulk oxide charge is present and that density of slow interface traps is low.

Figure 3 illustrates the drain current as a function of gate bias in the saturation region. The slope of the drain current shows that the peak extrinsic transconductance \((g_m) \) of the 1 \(\mu \)m gate length device is typically \(\sim 105 \) mS/mm. The theoretical intrinsic \(g_m \) in saturation region can be estimated to be \(\sim 235 \) mS/mm by \(g_m = \nu_{sat} \cdot C_{ox} \), where \(\nu_{sat} \) is \(\sim 5 \times 10^6 \) cm/s.\(^{15}\) Counting on the series resistance of the device \(R_s \sim 3.5 \) \(\Omega \) mm, the theoretical extrinsic \(g_m \) is \(\sim 129 \) mS/mm, which is \(\sim 20\% \) off from the measured peak \(g_m \) value. We ascribe this reduction of \(g_m \) to the existing interface traps and the reduction of mobility and saturation velocity at the interface. The flatband condition in the depletion-mode MOSFET is roughly at the gate bias, where the transconductance \(g_m \) appears maximum. The more the gate is biased below the flatband condition, the smaller the \(g_m \) is, because the distance from the gate to the channel increases by increasing the depletion width in the semiconductor. On the other hand, when the gate bias is above the flatband condition, additional carriers are confined to the interface and the gate-to-channel distance is fixed to the oxide thickness in this accumulation region. Beyond that gate voltage, the surface mobility is known to decrease with the transverse field (or gate bias), leading to \(g_m \) reduction. The flatband condition can be approximately determined to be \(\sim 0.3 \) V from Fig. 3. It is consistent with the theoretical value, which is the difference between the metal work function of Ti (3.95 eV) and the semiconductor work function of In\(_{0.2} \)Ga\(_{0.8} \)As (4.14 eV). It is also confirmed by the \(C−V \) measurement which is usually used to determine the flatband voltage.

A strong accumulation current is observed here from \(I_{ds} = 19 \) mA at \(V_{gs} = 0.3 \) V around the flatband condition to \(I_{ds} = 33 \) mA at \(V_{gs} = +3.0 \) V, as shown in Fig. 2. This indicates the high quality of Al\(_{0.2} \)O\(_{3.8} \)/In\(_{0.2} \)Ga\(_{0.8} \)As interface, which allows an accumulation current to exist at the interface. The \(I−V \) characteristic at \(V_{gs} > 0 \) is significantly improved compared to the previous published data on a GaAs MOSFET without an inserted InGaAs layer.\(^{15}\) In order to quantitatively characterize this Al\(_{0.2} \)O\(_{3.8} \)/In\(_{0.2} \)Ga\(_{0.8} \)As interface, we study the electron accumulation surface mobility, which is directly related to interface properties. There are at least three different scattering mechanisms that have been proposed to account for the surface mobility: phonon scattering, Coulomb scattering, and surface-roughness scattering. The surface mobility is governed by Coulomb scattering due to charged centers and phonon scattering in the low transverse field region. It is dominated by surface roughness and phonon scattering under strong accumulation. By measuring \(I_{ds} \) versus \(V_{gs} \) at \(V_{ds} = 0.1 \) V (mobility region) of 8-, 20-, and 40-\(\mu \)m-long channel devices, we are able to extract the series resistance of the devices with a relative error of less than 5\%. Therefore, an
We have demonstrated improved GaAs MOSFET with an inserted In0.2Ga0.8As layer as part of the channel using ALD-grown Al2O3 as a gate dielectric. A 1-μm-gate-length In0.2Ga0.8As/GaAs MOSFET with an Al2O3 gate oxide thickness of 160 Å shows a gate leakage current density less than 10−4 A/cm² and a maximum transconductance above 100 mS/mm. The strong accumulation current at Vgs > 0 enables us to deduce the electron accumulation surface mobility on In0.2Ga0.8As, resulting in as high as 660 cm²/Vs at the Al2O3/In0.2Ga0.8As interface. Our findings of high surface mobility of Al2O3/In0.2Ga0.8As interface suggest a good Al2O3/InGaAs interface and new opportunities in commercializing enhancement-mode (inversion channel) and complementary GaAs MOSFETs.

The authors would like to thank J. P. Mannaerts and M. Sergent for technical assistance.

2 Physics and Chemistry of III-V Compound Semiconductor Interfaces, edited C. W. Wilmsen (Plenum, New York, 1985), and references therein.

FIG. 4. Effective accumulation electron surface mobility \(\mu_{eff} \) as a function of effective accumulation mobility \(\mu_{eff} \), \(C_{ox} \), and \(V_{gs} \) can be defined as

\[
R_{ch} = \frac{V_{ds}}{I_{acc}} \frac{W_g}{L_g} = \frac{1}{\mu_{eff} C_{ox} (V_{gs} - V_{Gi})},
\]

where the channel capacitance is the normalized oxide capacitance \(\Gamma \), and \(V_{gs} \) is the voltage at the point of inflection of the \(I_{ds} \) versus \(V_{gs} \) curve (near the flatband voltage), and \(I_{acc} \) is the accumulation current that is taken as zero at \(V_{gs} = V_{Gi} \). Notice that at \(V_{gs} = V_{Gi} \), the buried-channel conductance is at maximum and remains constant at \(V_{gs} > V_{Gi} \). Figure 4 is the plot of \(\mu_{eff} \) versus effective electric field \(E_{eff} \) on InGaAs using the formalism expressed in Eq. (1). Unlike the situation for inversion, there is no depletion charge, and \(E_{eff} \) on InGaAs is simply

\[
E_{eff} = \frac{\varepsilon_{InGaAs}}{2e_{InGaAs}d_{ox}} (V_{gs} - V_{Gi}),
\]

where \(e_{InGaAs} \) (the dielectric constant of Al2O3) is 8.6, \(\varepsilon_{InGaAs} \) (the dielectric constant of In0.2Ga0.8As) is 13.4, and \(d_{ox} \) is the oxide thickness. The accumulation mobility of 660 cm²/Vs at low transverse field is much higher than the reported channel mobility of 470 cm²/Vs at InP-based Ga0.45Al0.55As/GaAs interface. The value of our surface mobility in the high transverse field region is 20% higher than that of the universal surface mobility of Si MOSFETs at the nearly perfect SiO2/Si interface. The surface mobility on GaAs surface is also plotted in Fig. 4 by performing similar measurements on Al2O3/GaAs MOSFETs. The higher surface mobility on the InGaAs surface further demonstrates a better interface quality of Al2O3/InGaAs and improved device performance for the InGaAs MOSFET compared to the GaAs MOSFET.