Intramolecular 1,3-Dipolar Cycloaddition of Alkylazide-enones and Rearrangements of the Triazoline Intermediates†

Chin-Kang Sha,*a Sheng-Lian Ouyang,a Der-Yung Hsieh,a and Tzong-Hsiung Hseub

a Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
b Institute of Molecular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

The intramolecular 1,3-dipolar cycloaddition of alkylazide-enones is followed by several novel rearrangements.

† The work described here was presented at the 9th International Congress of Heterocyclic Chemistry, Tokyo, August 1983.
Treatment of the bromide (1b)³ with sodium azide in aqueous methanol at 80 °C gave the products (9) and (10) in 24 and 63% yield, respectively. Alternatively, heating the methanesulphonate (1a)³ with sodium azide in dry dimethylformamide at 80 °C gave the same result. A reasonable mechanism was proposed and is shown in Scheme 1. Intramolecular 1,3-dipolar cycloaddition of (2) would give the triazole (3). The unstable triazole (3) could decompose to form the zwitterionic intermediate of conformation (4) or (5). Conformation (5) has a nitrogen anion in the axial position, which could easily attack the carbonyl group to give (6). Structure (6) could rearrange to give (10), presumably via the intermediate (7). On the other hand, conformation (4) could undergo a 1,2-alkyl shift and give the product (9) via (8).

The structure of (10) was confirmed by a single crystal X-ray analysis. Crystal data: C₉H₁₃N₂O, M = 151.209, monoclinic, space group P2₁/n, a = 5.478(2), b = 11.485(4), c = 12.831(9) Å, β = 94.72(5)°, Z = 4. 1733 Independent reflections were measured of which 816 were considered observed (I > 2σ(I)). The structure was solved by direct methods to a present R value of 0.094. An ORTEP drawing of the molecular structure of (10) is shown in Figure 1.‡

In order to understand the reaction mechanism, a methyl group was introduced to C(2) of the enone (1b). The enone

‡ The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Rd., Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.
(11)§ was prepared and treated with sodium azide in dry dimethylformamide at 80 °C. The aziridine (12) was obtained in 57% yield. The bromide (13), with a longer side chain, was treated with sodium azide under the same conditions and the product (14) was isolated in 64% yield. On the other hand, when the chloride (15)§ was treated with sodium azide in aqueous methanol, we obtained the product (16) in 10—15% yield (Scheme 2). The lower yield in this case may be due to the slow intramolecular cycloaddition owing to the regiochemistry of the dipole and dipolarophile. Detailed studies of this reaction and its applications to natural products synthesis will be reported in due course.

§ Compound (11) was prepared by the same method of ref. 3, but starting with 2-methyl-3-ethoxycyclohexanedione.

We gratefully acknowledge a grant from the National Science Council of the Republic of China.

Received, 19th December 1983; Corr. 1677

References