Synthesis and Crystal Structure of a Dioxo Heterometallic Complex
CpWO$_3$(CO)$_2$(μ-O)$_2$(μ-H) (Cp = η$_5$C$_5$H$_5$)

Yun Chi,*a Ling-shwu Hwang,a Gene-Hsiang Lee,b and Shie-Ming Peng**b

a Department of Chemistry, National Tsinghua University, Hsinchu 30043, Taiwan
b Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan

The dioxo complex CpWO$_3$(CO)$_2$(μ-O)$_2$(μ-H) (Cp = η$_5$C$_5$H$_5$) has been prepared from CpWO$_3$(CO)$_2$(μ-H) by treatment with Me$_3$NO and then 95% ethanol; the crystal structure has been determined, suggesting the presence of unique bridging oxo ligands.

There is a growing interest in the synthesis of organometallic complexes containing oxygen donor ligands since they can serve as both realistic model and potential catalyst for the oxygen transfer reactions. Many mononuclear and dinuclear oxygen complexes have appeared in the literature. Extension of the preparative work to polynuclear systems is of particular interest because the latter may provide a direct link between the so-called organometallic oxides and the inorganic oxides or polyoxoanions. Here we report the synthesis and structural characterization of an unique heterometallic carbonyl cluster oxide.

The tetrahedral cluster CpWO$_3$(CO)$_7$(μ-H) (1) is readily available from the condensation of Os$_3$(CO)$_{10}$(NCMe)$_2$ and CpW(CO)$_3$H.4 Treatment of complex (1) with 1 equiv. Me$_3$NO in acetonitrile, followed by reaction with 95% ethanol by t.l.c. The i.r. spectrum (C$_6$H$_{12}$) in the carbonyl region reveals absorption bands at 2098(s), 2074(vs), 2031(vs), 2017(s), 2010(sh), 1991(w), 1965(m), 1944(m) cm$^{-1}$ indicating the presence of terminal CO ligands. The 1H n.m.r. (400 MHz, room temp., CDC$_2$Cl$_2$) spectrum shows a Cp resonance at δ 6.37 (5H) and a hydride resonance at δ -15.5 (1H). The molecular structure of CpWO$_3$(CO)$_7$(μ-O)$_2$(μ-H) (2) is proposed for this complex. Orange crystals suitable for a single crystal X-ray diffraction study were obtained by recrystallization from CH$_2$Cl$_2$–heptane at room temperature.

The molecular structure of (2) is shown in Figure 1 together with some important bond parameters.5 The molecule has a tetrahedral WO$_3$ core structure in which the tungsten atom is co-ordinated to a Cp ring, while each of the osmium atoms is linked to three terminal CO ligands. The bridging hydride has not been located on the difference Fourier map; however, it is proposed to associate with the Os(2)–Os(3) edge because it is the longest Os–Os bond in the molecule. An unusual feature of this molecule is that the two bridging oxo ligands which are located on the two W–Os bonds of equal length.

† The m/z value is referenced to 184W and 182Os.
‡ Crystal data for C$_{14}$H$_{60}$O$_{11}$WO$_3$, M = 1104.27, monoclinic, space group C2/c, a = 31.057(22), b = 10.446(9), c = 12.388(16) Å, β = 103.56(9)6, U = 3906.98 Å3, Z = 8, D$_c$ = 3.756 mg/cm3, F(000) = 3438.30, CAD 4 diffractometer with graphite-monochromated Mo-K$_{\alpha}$ radiation, λ = 0.7093 Å, µ(Mo-K$_{\alpha}$) = 25.53 mm$^{-1}$. ψ scan absorption correction has been made and 3437 unique reflections were measured and 2748 reflections with I > 3σ(I) were used in refinement. Refinement of the positional and anisotropic thermal parameters for tungsten and osmium atoms and the positional and isotropic thermal parameters for all other non-hydrogen atoms converged to R$_{P}$ = 0.076 and R$_{w}$ = 0.095. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 1. The molecular structure of (2). Bond lengths (Å): Os(1)–Os(2), 2.831(4); Os(1)–Os(3), 2.838(4); Os(2)–Os(3), 2.987(5); W–Os(1), 2.610(3); W–Os(2), 2.838(3); W–Os(3), 2.878(3); W–Os(4), 1.78(3); Os(2)–Os(10), 2.12(4); W–Os(11), 1.803(5); Os(2)–Os(3), 2.06(3). Bond angles (°): Os(3)–Os(2)–C(5), 117(1); Os(2)–Os(3)–C(8), 117(1); Os(1)–Os(2)–C(6), 90(1); Os(1)–Os(3)–C(9), 89(1).
174.6, 169.5 (J_{C-H} 13 Hz) and 168.6 with an intensity ratio of 1:2:2:2:2 (Figure 2). On warming up to room temperature, the resonances at δ 193.6 and 181.5 broaden and coalesce into baseline, suggesting a fast exchange between these two sites and leading us to assign these to the axial and equatorial CO's on the unique Os(CO)$_3$ unit, respectively. The rest of the resonances are due to the CO's on the Os atoms associated with the bridging oxygen and hydride; the resonance at δ 169.5 is assigned to the CO ligands trans to the bridging hydride by the characteristic J_{C-H} coupling.

The oxo ligand is clearly not originated from the Me$_3$NO used: addition of Me$_3$NO (3 equiv.) in the first stage, or thermolysis in a carefully dried toluene solution in the second stage generated intractable product instead.

We thank the National Science Council of the Republic of China for financial support; Y.C. also acknowledges the Ministry of Education for a starting research grant.

Received, 8th June 1988; Com. 802296H

References
8 Y. Chi, G. H. Lee, and S. M. Peng, unpublished result.