Compositional modulation and longrange ordering in GaP/InP shortperiod superlattices grown by gas source molecular beam epitaxy

Citation: Appl. Phys. Lett. 57, 2244 (1990); doi: 10.1063/1.103903
View online: http://dx.doi.org/10.1063/1.103903
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v57/i21
Published by the American Institute of Physics.

Related Articles
Epitaxial Cr on n-SrTiO3(001)—An ideal Ohmic contact

Nucleation of lateral compositional modulation in InGaP epitaxial films grown on (001) GaAs

Structural and optical studies of nitrogen incorporation into GaSb-based GaInSb quantum wells

Molecular beam epitaxial growth and optical properties of highly mismatched ZnTe1–xOx alloys

Deep levels in H-irradiated GaAs1-xNx (x<0.01) grown by molecular beam epitaxy
J. Appl. Phys. 110, 124508 (2011)

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Compositional modulation and long-range ordering in GaP/InP short-period superlattices grown by gas source molecular beam epitaxy

Center for Compound Semiconductor Microelectronics, Department of Electrical and Computer Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois 61801

(Received 30 April 1990; accepted for publication 18 September 1990)

Long-range ordering in a (GaP)_2/(InP)_2 short-period superlattice and a Ga_0.524In_0.475P buffer layer grown on a (001)GaAs substrate by gas source molecular beam epitaxy were studied. Transmission electron microscopy and low-temperature cathodoluminescence techniques were used to examine the microstructure of the short-period superlattice and to determine its band-gap energy. The superlattice layer was found to have a [001] long-range ordered structure with a band gap narrowing of about 130 meV, while the Ga_0.525In_0.475P layer had a 37 meV band-gap narrowing induced by spontaneous long-range ordering in the [111] direction. The ordered superlattice layer was found to have a growth-induced lateral periodic modulation of the composition along the [110] direction. Within the modulating bands, which had a 200 Å periodicity, the In composition was found to vary from 42 to 56% while the Ga correspondingly varied between 58 and 44%.

Spontaneous growth-induced ordering which lowers the band-gap energy by ~ 50 meV is typically observed in metalorganic chemical vapor deposition (MOCVD) grown Ga_0.4In_0.6P epitaxial layers. This type ordering has a CuPt-like structure, i.e., the column III sublattice, alternating (111)Ga and (111)In layers which grow in two of the four possible (111) directions. Other compound semiconductors such as AlGaInAs, Ga_0.5In_0.5As, and GaAsSb tend to display a spontaneous CuAu-I type structure, i.e., ordering along the [001] direction. While there are presently no reports describing the optical properties of spontaneously ordered CuAu-I structures, the optical properties of intentionally ordered CuAu-I structures have been investigated. In the AlGaInAs material system, molecular beam epitaxy (MBE) grown (AlGaInAs) layers which grow two monolayers thick. Double-crystal x-ray diffractometry (DCXD) was used to determine the lattice constant and corresponding composition of the \(\text{Ga}_x\text{In}_{1-x}\text{P} \) buffer layer. The value of \(x \) was found to be 0.525.

The structure of the (GaP)_2/(InP)_2 SPS was further examined by cross-sectional TEM. Figure 1 shows the electron diffraction patterns for the SPS in two perpendicular (110) directions. Satellite reflections are clearly seen around the fundamental reflections along the [002] growth direction. The distance between the satellite spot and the nearest neighboring fundamental spot is approximately 1/4 the distance separating two neighboring fundamental [002] reflections. This is an indication that the period of SPS is roughly four monolayers. It is also noteworthy that the shapes of the 1/4 [002] diffraction spots are different for both (110) directions. In the [110] cross section they appear round and symmetric, while in the [110] cross section they appear elongated. Such differences indicate a loss of symmetry between morphologies of the [110] and [110] cross sections of the superlattice layer, as can be clearly seen in Fig. 2. A uniform image appears in the [110] cross section using [002] dark field imaging, while weak modulating dark and white bands, approximately 100 Å wide and parallel to the growth direction are clearly visible in the view of the [110] cross section. Energy dispersive x-ray microanalysis performed with a 10 Å electron beam probe.
reveals that the dark and white bands are actually a relative variation of the column III composition. A higher than average In content was found to exist within the white bands while a higher than average Ga content within the dark bands. A maximum composition of Ga_{0.44}In_{0.56}P was measured for the In-rich bands and Ga_{0.55}In_{0.45}P for the Ga-rich bands. This growth-induced modulation of the composition was found to be plate-like with each plate nearly parallel to [110] direction. Because of the nature of the plate-like structure, streaking is expected to appear around each electron diffraction spot in the direction normal to the plate. As expected, this electron diffraction pattern was found around the superlattice reflections in the [110] zone-axis. To further study the composition modulation phenomenon, a [110] cross-sectional bright field TEM micrograph of a sample imaged with the transmitted beam and two adjacent superlattice reflections was recorded as is shown in Fig. 3. We note that the superlattice fringes with spacings of 12 Å appear flat and smooth near the buffer layer interface and show corrugations near the surface. The spacing is slightly larger than 11.3 Å which would be expected of a SPS formed by two monolayers of GaP and two monolayers of InP. This indicates that the deposition rate of Ga and/or the In atoms deviated from exactly two monolayers. As a result, while most of the growth surface has a (GaP)_{2}/(InP)_{2} SPS structure, some areas contain more than two monolayers of GaP or InP. Due to the 8% lattice mismatch between GaP and InP, the excess column III atoms will rearranged themselves in order to minimize the total free energy. Consequently, a growth-induced lateral periodic variation in the composition along the [110] direction was formed in the SPS structure. The mechanism responsible for the formation and the reason for the directional dependency of the plate-like structure are unclear at the present time, but it is the subject of further study. Its origin is not believed to be attributable to instabilities in the source flux or substrate temperature, however, as this usually results in strain relaxation which is perpendicular to the growth direction.11

Low-temperature (~90 K) CL having an electron energy of 20 keV was performed on the sample cross section to determine the band gaps of the epitaxial layers. Since the (GaP)_{2}/(InP)_{2} SPS has an average composition that is close to that of the buffer layer, their corresponding peak emission energies should be near one another. Instead, as shown in curve (a) of Fig. 4, in addition to the Ga_{0.525}In_{0.475}P layer emission peak at 6263 Å, a second peak at 6795 Å is observable in the as-grown sample. This energy is ~150 meV lower than a correspondingly unordered bulk Ga_{0.5}In_{0.5}P layer. Since both SPS and buffer layer are undoped and the relative emission intensity of the CL spectra at 6795 Å is strong, it cannot be attributed to any donor/acceptor transition. One possible explanation for the large disparity is ordering induced band-gap narrowing, similar to the (AlAs)_{m}/(GaAs)_{n} and (GaAs)_{m}/(InAs)_{n} SPS previously studied.16 In order to more precisely quantify the band-gap narrowing effect, the SPS structure was disordered by annealing at 825 °C for 5.5 h in a sealed ampoule under a P_{4} atmosphere.
band-gap narrowing of less than average composition of the as-grown approximately through impurity-induced disordering, the In and Ga atoms are disordered either by thermal annealing or by GSMBE. In addition to the 12 Å periodicity along the growth direction, the SPS also had a lateral 200 Å periodic variation in composition along the [110] direction. Across the modulating bands, the In content varied between 42 and 56% while the Ga varied correspondingly between 58 and 44%. The photon emission energies obtained from the low-temperature CL spectra of the as-grown and annealed samples indicate a band-gap narrowing of greater than 130 meV for the SPS layer. The Ga0.525In0.475P buffer layer had a 37 meV band-gap narrowing and it is attributed to a weak CuPt-type ordering.

The authors are grateful to Dr. S. Bailey for assistance in the cathodoluminescence experiments and discussions, and to Professor G. E. Stillman and Professor N. Holonyak, Jr. for support. We would also like to acknowledge the Microanalysis Center at the University of Illinois for the use of the microanalysis facilities. This work has been supported by the National Science Foundation (EC0-89-43166 and DMR-89-20538), the Joint Service Electronics Program (N00014-90-J-1270) and the AT&T Affiliates Program.