English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 9070914      Online Users : 109
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 電機資訊學院 > 電子工程研究所 > 博碩士論文  >  0.35um SiGe BiCMOS 5.2 GHz 射頻主動電感的設計與應用

    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/34483

    Title: 0.35um SiGe BiCMOS 5.2 GHz 射頻主動電感的設計與應用
    Other Titles: Design and Application of 0.35um SiGe BiCMOS 5.2GHz Active Inductor
    Authors: 黃文彬
    Wen-Pin Huang
    Jeng Gong
    教師: 龔正
    Date: 2004
    Keywords: 主動電感
    active inductor
    active load low noise amplifier
    Abstract: 在本篇論文中,我們使用了0.35μm SiGe BiCMOS 製程設計一個可操作至射頻範圍的主動電感,並將設計的主動電感應用於實際電路中。第一章描述本篇論文的研究動機以及各章節的組織安排。第二章中,我們討論了現代製程中常被使用的各式電感,包含平面螺旋電感、金屬打線電感和以gyrator為核心結構的主動式電感。在第三章中,我們討論不同的設計考量與電路結構內各元件對主動電感特性的影響。其中,使用一個回授電阻可以有效的提升電感的品質因素,再加上一個額外的電容可以改變主動電感的等效電感值。結合這兩種方法可以輕易的設計出品質因素大於20的主動電感,並在某些特定的場合能夠有效的取代由晶圓廠所提供的平面螺旋電感,除了有效提升品質因素,主動電感並可以明顯的減少晶片面積消耗。第四章中,我們比較分別使用平面螺旋電感和主動電感當負載的低雜訊放大器,其中使用被動電感當負載的S11 和 S22 皆在5.2GHz時小於-10dB,S21 為 15.9dB,雜訊指數為2.25dB,功率消耗為11.6mW。而主動負載的低雜訊放大器同樣具有S11 and S22 在5.2GHz時小於-10dB,S21 為 20dB,雜訊指數為4dB,功率消耗為16.5mW。最後於第五章為本論文結論與未來繼續研究的方向。
    In this thesis, a 0.35μm SiGe BiCMOS gyrator cell active inductor has been designed and realized into circuit. In the first chapter, motivation and thesis organization is introduced. In Chapter 2, different types of inductor are discussed, including spiral inductor, bond-wire inductor and active inductor. In Chapter 3, based on gyrator cell, different effects caused by different components in the circuit are simulated. Using a feedback resistor technique and an additional capacitor can generate an inductance whenever we need. The quality factor of these active inductors can remain above 20 easily. Spiral inductors provide by the foundry can be substituted in some cases by active inductor. Using spiral inductor provides high performance at quality factor and can shrink the chip area significantly. In Chapter 4, a SiGe cascode Low Noise Amplifier with active inductive load and passive inductive load are designed. And their performance are compared. S11 and S22 of the passive load are smaller than -10dB. S21 equals to 15.9dB. Noise Figure equals to 2.25dB and the power dissipation equals to 11.6mW. The other circuit with active load has S11 and S22 below -10dB at 5.2GHz. S21 equals to 20dB. Noise Figure equals to 4 dB. Power dissipation of the total circuit equals to 16.5mW. Finally, in Chapter 5, conclusion of this work and a short future work are given.
    Isbasedon: [1] H. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, pp.101 – 109, Vol. 10, Issue: 2 , Jun 1974.

    [2] Nguyen, N.M.; Meyer, R.G, “Si IC-compatible inductors and LC passive filters,” IEEE J. Solid State Circuits, pp. 1028-1031, Vol. 25, no. 4, 1990.

    [3] M. Park, S. Lee, H. K. Yu, J. G. Koo, and K. S. Nam, “High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology,” IEEE Microwave Guided Wave Lett., pp. 45-47, Vol. 7, Feb. 1997.

    [4] Burghartz, J.N.; Jenkins, K.A.; M. Soyuer,” Multilevel-spiral inductors using VLSI interconnect technology,” IEEE Electron Device Lett., pp. 428-430, Vol. 17, Sept. 1996.

    [5] Ming-Chun Hsieh; Yean-Kuen Fang; Chung-Hui Chen; Shuo-Mao Chen; Wen-Kuan Yeh,”Design and fabrication of deep submicron CMOS technology compatible suspended high-Q spiral inductors,” IEEE Transactions on Electron Devices, pp. 324 – 331, Vol. 51, March 2004.

    [6] J. Y.-C. Chang, A. A. Abidi, M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Lett., pp. 246-248, Vol. 14, no. 5, 1993.

    [7] P. Q. Chen and Y. J. Chan, “Improved microwave performance on low-resistivity Si substrates by Si+ ion implantation,” IEEE Trans. Microwave Theory Tech., pp. 1582-1585, Vol. 48, Sept. 2000.

    [8] Yong-Goo Lee; Sang-Ki Yun; Hai-Young Lee, “Novel high-Q bondwire inductor
    for MMIC,” Electron Devices Meeting, IEDM '98 Technical Digest.,
    International, pp.548 – 551, Dec. 1998.

    [9] Sung-Jin Kim; Yong-Goo Lee; Sang-Ki Yun; Hai-Young Lee, “Realization of
    high-Q inductors using wirebonding technology,” The First IEEE Asia Pacific
    Conference on ASICs, AP-ASIC '99., pp.13 – 16, Aug. 1999.
    [10] Hara, S.,” Broad-band monolithic microwave active inductor and its application
    to miniaturized wide-band amplifiers,” IEEE Trans. on Microwave Theory and
    Techniques, pp.1920 – 1924, Vol. 36, no. 12, Dec. 1988

    [11] Hara, S.; Tokumitsu, T.; Aikawa, M., “Lossless broad-band monolithic
    microwave active inductors,” Microwave Symposium Digest, IEEE MTT-S
    International, pp.1229 – 1232, Vol.3, June 1996.

    [12] Thanachayanont, A.; Payne, A.,”VHF CMOS integrated active inductor,” Electronics Letters, pp.999 – 1000, Vol. 32, Issue: 11, 23 May 1996.

    [13] G. Mascarenhas, J. Caldinhas Vaz, and J. Costa Freire, “ CMOS active inductors for L band,” in Asia-Pacific Microwave Conf., Tech. Dig., pp. 157-160, 2000.

    [14] Bialko, M., “Realizations of Inductive and Capacitive Gyrators,” IEEE Transactions on Circuits and Systems, pp.158 – 160, Vol. 15, Jun 1968.

    [15] Fu Tz-heng, Feng Wu-shiung, “A 2.4-GHz CMOS RF Low Noise Amplifier with Active Load,” NTU Thesis, R.O.C., 1999

    [16] Sackinger. E., W. Guggenbuhl., “A high swing high-impedance MOS cascode
    circuit,” IEEE J. Solid-State Circuits, pp. 289-298, 1990.

    [17] Bult, K. Gielen., J.G.M., “A fast-settling CMOS op-amp for SC circuits with 90-dB gain,” IEEE J. Solid-State Circuits, pp. 1379-1384, 1990.

    [18] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 1998.

    [19] Y. C. Hsu, M. L. Sheu, “Design of CMOS Low Noise Amplifier for 5.2GHz
    Wireless Local Area Network,” NCNU Thesis, R.O.C., 2003.

    [20] 呂學士編譯, 本城和彥原著, “ 微波通訊半導體電路,” 全華科技, 2001

    [21] C. J. Chang, S. I. Liu, “CMOS Low Noise Amplifier,” NTU Thesis, R.O.C., 2001.

    [22] David A. Johns, Ken Martin, “Analog Integrated Circuit Design,” Wiley,1997.

    [23] Chao-Chih Hsiao, Chin-Wei Kuo, Chien-Chih Ho, Yi-Jen Chan, “Improved quality-factor of 0.18-/spl mu/m CMOS active inductor by a feedback resistance design,” IEEE Microwave and Wireless Components Letters , pp. 467-469, Vol. 12 , Issue: 12 , Dec. 2002

    [24] I. E. Ho and R. L. Van Tuyl, “Inductorless monolithic microwave amplifiers with directly cascaded cells,” in IEEE MTT-S Tech. Dig., pp. 515-518, Vol. 1, May 1990.

    [25] Mascarenhas, G.., Caldinhas Vaz, J., Costa Freire, J., “CMOS active inductors for L band,” Microwave Conference, 2000 Asia-Pacific, pp. 157-160, 3-6 Dec. 2000

    [26] Thanachayanont, A., “CMOS transistor-only active inductor for IF/RF applications,” Industrial Technology, 2002. IEEE ICIT '02. 2002 IEEE International Conference, pp. 1209-1212, Vol. 2, 11-14 Dec. 2002

    [27] Behzad Razavi, “RF Microelectronics,” Pearson Education Taiwan Ltd., 2003.

    [28] Derek K. Shaeffer and Thomas H. Lee, “A 1.5V, 1.5GHz CMOS Low Noise Amplifier,” IEEE J. of Solid-State Circuits, pp. 745-759, Vol. 32, no.5, May 1997.

    [29] Po-Wei Lee, Shey-Shi Lu, “The Design and Implimentation HBT Low Noise Amplifiers,” NTU Thesis, R.O.C., 2002.

    [30] Guillermo Gonzalez, “Microwave transistor amplifiers: analysis and design,”
    Prentice Hall, 1984.

    [31] Sadowy J., Graffeuil J., Tournier E., Escotte L., Plana R., “Advanced design of high linearity, low noise amplifier for WLAN using a SiGe BiCMOS technology,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers, pp. 6-11, 12-14 Sept. 2001

    [32] Erben U., Sonmez E., “Fully differential 5 to 6 GHz low noise amplifier using SiGe HBT technology, ” Electronics Letters, pp. 39-41, Vol. 40, Issue: 1 , 8 Jan. 2004

    [33] Thanachayanont A., Payne A., “A 3-V RF CMOS bandpass amplifier using an active inductor,” Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, ISCAS '98., pp. 440-443, Vol. 1, 31 May-3 June 1998

    [34] Zhuo, W.; de Gyvez, J.P.; Sanchez-Sinencio, E., “Programmable low noise amplifier with active-inductor load,” Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS '98, pp.365-368, Vol. 4, 31 May-3 June 1998

    [35] Sharaf K, “2-V, 1-GHz CMOS inductorless LNAs with 2-3dB NF,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 714-717, Vol. 2, 8-11 Aug. 2000

    [36] Jhy-Neng Yang; Yi-Chang Cheng; Terng-Yin Hsu; Terng-Ren Hsu; Chen-Yi Lee, “A 1.75 GHz inductor-less CMOS low noise amplifier with high-Q active inductor load,” Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, 2001. MWSCAS ‘01, pp. 816-819, Vol. 2, 14-17 Aug. 2001
    URI: http://nthur.lib.nthu.edu.tw/handle/987654321/34483
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH000915025.id
    Appears in Collections:[電子工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat


    SFX Query


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback