English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51486/58695 (88%)
Visitors : 5178059      Online Users : 37
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/67651


    Title: 低介電材料之製備及其性質研究
    Authors: Wang, Jen-Yu
    王仁佑
    Description: GH009532815
    化學工程學系
    博士
    國立清華大學
    Date: 2011
    Keywords: 介電常數;環氧樹脂;雙馬來醯亞胺樹脂;氧化石墨烯
    Abstract: 本研究主要包括三部份:第一部分為合成含三氟甲基基團之胺固化環氧樹脂於低介電材料之應用與性質分析,第二部分為含氟馬來醯亞胺樹脂的合成與性質探討,第三部分為以原位聚合法製備聚亞醯胺/氧化石墨烯之高機械強度及低介電薄膜複合材料。
    研究第一部分為利用綠色製程製備含氟之環氧樹脂diglycidyl ether of bisphenol F (DGEBF),採用硬化劑4,4’-diaminodipheyl-methane (DDM)硬化。將合成之DGEBF與泛用型環氧樹脂diglycidyl ether bisphenol A (DGEBA)進行掺混,採用硬化劑DDM硬化。由於含氟基團導入環氧樹脂結構中,使得材料熱安定性及玻璃轉移溫度下降。再者,由於氟原子具有高電負度、低極化性及較大的分子自由體積,隨著DGEBF添加量增加,其材料之介電常數 (dielectric constants)皆較純DGEBA環氧樹脂低,其介電常數值在 1 MHz頻率下最低為2.03。而環氧樹脂導入含氟基團,使得環氧樹脂材料有較低的吸濕性及較高的靜態接觸角 (80°)。
    研究第二部分為利用三步驟合成法開發一系列新型含氟及含溴氟之雙馬來醯亞胺單體,並利用微波合成法與雙胺單體進行加成反應,合成一系列含氟及含溴氟之雙馬來醯亞胺樹脂。由於高溫熱硬化之含氟之雙馬來醯亞胺樹脂具有較緊密的網狀結構,在氮氣下受熱裂解時的起始裂化溫度 (232-293℃)、玻璃轉移溫度(Tg) (123-141℃)及800℃時之焦炭殘餘率 (20.7-39.7 wt%)均相對較高。由於含氟基團導入雙馬來醯亞胺樹脂,可有效降低高分子材料的介電常數值。其介電常數值(Dk)和一般商用型BMI樹脂比較下,其Dk均降至2.49以下,最低可達2.18。除此之外,於含氟雙馬來醯亞胺樹脂中引入含溴基團,也可增加材料之熱穩定性。
    研究第三部分為利用原位聚合法設計大面積具高機械強度之氧化石墨烯/聚亞醯胺複合材料薄膜 (graphene oxide (GO)/polyimide (PI) composite films),此高分子GO/PI 複合材料薄膜具有高拉伸強度 (tensile strength) (最高可為844 MPa)及高拉伸模數 (tensile modulus) (20.5 GPa)。在GO表面上接枝ODA (4,4' -Diaminodiphenyl ether)單體,提升GO於高分子基材中的分散性,使GO填充材料與高分子基材間形成強力鍵結,而兩者介面間具有較佳的荷重傳遞效率 (load transfer efficiencies)。由於GO均勻分散至PI基材中,且GO與PI間具有較強的界面作用力,當填充材料為3.0 wt% ODA-GO,其複合材料薄膜之拉伸模數為純PI薄膜的15倍,及拉伸強度為純PI薄膜的9倍。而其介電常數值隨著GO添加量之增加而漸次下降,其數值可達2.0。此研究方法為製備高性能之GO-高分子複合材料提供一有效途徑。
    ???metadata.dc.relation.isbasedon???: 參考文獻
    [1] Laura Peters, Semiconductor International, Cover Story, September, p64 (1998).
    [2] San Jose, The National Technology Roadmap for Semiconductors , Semi- conductor Industry Association, CA, p73-p83 (2000).
    [3] A. J. Moulson, J. M. Herbert, Chapman & Hall, London, p225 (1990).
    [4] 林振華,電子材料,全華科技圖書股份有限公司,2001,12 月。
    [5] 陳皇鈞譯,材料科學與工程,曉園出版社,1989,1 月。
    [6] J. Y. Kim, M. S. Hwang, Y. H. Kim, H. J. Kim, and Y. Lee, Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition, J. Appl. Phys., 90, 2469-2473(2001)
    [7] H. J. Lee, Y. H. Kim, J. Y. Kim, E. K. Lin, B. J. Bauer, W. Wu and H. J. Kim, Structural characterization of porous low-k SiOC thin films using X-ray porosimetry, Proceedings of 2002 IEEE VLSI, p54-p56 (2002).
    [8] Y. L. Cheng, Y. L. Wang, Y. L. Wu, C. P. Liu, C. W. Liu, J. K. Lan, M. L. O’Neil and Chyung Ay, Moisture resistance and thermal stability of fluorine-incorporation siloxane-based low-dielectric-constant material. Thin Solid Films, Thin Solid Films, 447-448, 681-687 (2004).
    [9] http://www.eetimes.com/
    [10] D. W. Van Krevelen, Properties of Polymers, 3rd ed. Amsterdam : Elsevier; p321 (1990).
    [11] G. Maier, Low dielectric constant polymers for microelectronics, Prog. Polym. Sci., 26, 3-65(2001).
    [12] H. P. Hu, R. D. Gilbert and R. E. Fornes, Chemical modification of cured MY720/DDS epoxy resins using fluorinated aromatic compounds to reduce moisture sensitivity, J. Polym. Sci. Part A:Polym Chem. 25, 1235-1248 (1987).
    [13] S. Sasaki and Y. Hasuda, Polymers derived from bis(4-hydroxyphthalimide)s, I preparation and properties of bis(4-hydroxyphthalimide)s, J. Polym. Sci. Part C:Polym. Lett. 24, 377-382(1986).
    [14] S. Sasaki and K. Nakamura, Syntheses and properties of cured epoxy resins containing the perfluorobutenyloxy group. I. Epoxy resins cured with perfluorobutenyloxyphthalic anhydride, J. Polym. Sci. Polym.Chem. Ed., 22, 831-840 (1984).
    [15] T. Maruno, K. Nakamura and N. Murata, Synthesis and properties of a novel fluorine-containing alicyclic diepoxide, Macromolecules, 29, 2006-2010 (1996).
    [16] T. Maruno and K. Nakamura, Fluorine-containing optical adhesives for optical communications systems, J. Appl. Polym. Sci., 42, 2141-2148 (1991).
    [17] M. Sangermano, R. Bongiovanni, G. Malucelli, A. Priola, A. Policino and A. Recca, Fluorinated epoxides as surface modifying agents of UV-curable systems, J. Appl. Polym. Sci., 89, 1524-1529 (2003).
    [18] F. R. Dammont and T. K. Kwei, Dynamic mechanical properties of aromatic, aliphatic, and partially fluorinated epoxy resins, J. Polym. Sci. Part A-2: Polym. Phys., 5, 761-769 (1967).
    [19] T. E. Twardowski and P. H. Geil, A highly fluorinated epoxy resin: Post-curing and transition behavior, J. Appl. Polym. Sci., 41, 1047-105 (1990).
    [20] J. R. Lee, F. L. Jin, and S. J. Park, Substitution effects of methyl and trifluoromethyl groups on the physicochemical properties of epoxy resins, J. Appl. Polym. Sci., 98, 1860-1864 (2005).
    [21] J. R. Lee, F.L. Jin, S.J. Park and J.M. Park, Study of new fluorine-containing epoxy resin for low dielectric constant, Surf. Coat. Technol., 180-181 ,650–654 (2004).
    [22] E. T. Ryan, A. J. McKerrow, J. Leu and P. S. Ho, Materials issues and characterization of low-k dielectric materials, MRS Bull, 22, 49-54 (1997).
    [23] F. W. Mercer and M. T. McKenzie, Dielectric and thermal characterization of fluorinated polyimides containing heterocyclic moieties, High Perform. Polym. 5, 97-106 (1993).
    [24] C. Y. Yang, S. L. C. Hsu and J. S. Chen, Synthesis and Properties of 6FDA-BisAAF-PPD Copolyimides for Microelectronic Applications, J. Appl. Polym. Sci., 98, 2064-2069 (2005).
    [25] K. Xie, S. Y. Zhang, J. G. Liu, M. H. He and S. Y. Yang, Synthesis and Characterization of Soluble FluorineContaining Polyimides Based on 1,4-Bis(4-amino-2- trifluoromethylphenoxy)benzene, J. Polym. Sci. Part A: Polym. Chem., 39, 2581-2590 (2001).
    [26] S.Y. Yang, Z.Y. Ge, D.X. Yin, J.G. Liu, Y.F. Li and L. Fan, Synthesis and characterization of novel fluorinated polyimides derived from 4,4′-[2,2,2-trifluoro-1-(3-trifluoromethylphenyl) ethylidene]diphthalic anhydride and aromatic diamines, J Polym Sci Part A: Polym. Chem., 42 , 4143–4152 (2004).
    [27] S. U. Kim, C. Lee, S. Sundar, W. Jang, S. J. Yang and H. Han, Synthesis and characterization of soluble polyimides containing trifluoromethyl groups in their backbone, J. Polym. Sci. Part B: Polym. Phys., 42, 4303-4312 (2004).
    [28] W. Jang, D. Shin, S. Choi, S. Park and H. Han, Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films, Polymer, 48, 2130-2143 (2007).
    [29] S. J. Park, K. S. Cho and S. H. Kim, A study on dielectric characteristics of fluorinated polyimide thin film, J. Colloid & Interface Sci., 272, 384-390 (2004).
    [30] H. J. Chen, S. Y. Chang, H. C. Chiue, W. S. Lai and S. J. Lin, Processing and Characterization of Fluorinated Amorphous Carbon Low-Dielectric-Constant Films, J. Electrochem. Soc., 151, F276-282 (2004).
    [31] 桓內弘 著,賴耿陽 譯,「環氧樹脂應用實務」,復漢出版本土, 台北,1993。
    [32] 王春山,「環氧樹脂簡介與最近的發展(一)~(四) 」,化工技術,第二卷,第十期,第54頁,1994;第二卷,第十一期,第120頁 1994;第二卷,第十二期,第129頁,1994;第三卷,第一期,第166頁,1995。
    [33] R. C. Mehrotra, Synthesis and reactions of metal alkoxides, J. Non-Cryst. Solids, l00, 1-15 (1988).
    [34] 翁維祥,「銅箔基板環氧樹脂」,國立中央大學碩士論文,2000。
    [35] 陳炳宏,「混成纖維強化環氧樹脂拉擠成型複合材料之研究」,中國文化大學碩士論文,2003。
    [36] 馬振基、趙珏著,「高分子複合材料下冊、製程、檢測與應用」,華香園出版社,台北,2006。
    [37] 蕭世明,「含磷/氮難燃高分子之製備與熱穩定性質」,國立中興大學碩士論文,2001。
    [38] C. H. Lin, J. C. Chiang and C. S. Wang, Low dielectric thermoset (I). Synthesis and properties of novel 2,6-dimethyl phenol-dicyclopentadiene epoxy, J. Appl. Polym. Sci., 88, 2607 (2002).
    [39] C. H. Lin, J. C. Chiang and C. S. Wang, Low dielectric thermoset II. Synthesis and properties of novel 2,6-dimethyl phenol-dipentene epoxy, J. Polym. Sci. Part A: Polym. Chem., 40, 4084-4097 (2002).
    [40] J.R. Lee, F.L. Jin, S.J. Park and J.M. Park, Study of new fluorine-containing epoxy resin for low dielectric constant, Surf. Coat. & Tech., 180-181, 650-654 (2004).
    [41] A. Boudefel and P. Gonon, Dielectric response of an epoxy resin when exposed to high temperatures, J Mater Sci: Mater. Electron., 17, 205-210 (2006).
    [42] Z. Tao, S. Yang, Z. Ge, J. Chen and L. Fan, Synthesis and properties of novel fluorinated epoxy resins based on 1 1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane, Eur. Polym. J., 43, 550-560 (2007).
    [43] H. J. Hwang, S. W. Hsu, C.L. Chung and C. S. Wang, Low dielectric epoxy resins from dicyclopentadiene-containing poly(phenylene oxide) novolac cured withdicyclopentadiene containing epoxy, Reac. Funct. Polym., 68, 1185-1193 (2008).
    [44] J. K. Duan, C. Kim, Z. Yun and P. Jiang, Morphology and thermal and dielectric behavior of cycloaliphatic epoxy/trimethacrylate interpenetrating polymer networks for vacuum-pressure- impregnation electrical insulation, J. Appl. Polym. Sci., 110, 3096-3106 (2008).
    [45] J. Lin and X. Wang, New type of low-dielectric composites based on o-cresol novolac epoxy resin and mesoporous silicas: fabrication and performances, J. Mater. Sci., 43, 4455-4465 (2008).
    [46] S. C. Yang, S. Y. Kwak, J. H. Jin and B. S. Bae, Highly Condensed Epoxy−Oligosiloxane-Based Hybrid Material for Transparent Low-k Dielectric Coatings, Appl. Mater. & Interf., 7, 1585-1590 (2009).
    [47] K. C. Yung, B. L. Zhu, T. M. Yue and C. S. Xie, Development of epoxy-matrix composite with both high-thermal conductivity and low-dielectric constant via hybrid filler systems, J. Appl. Polym. Sci., 116, 518-527 (2010).
    [48] Z. Y. Ge, Z. Q. Tao, G. Li, J. P. Ding, L. Fan and S. Y. Yang, Synthesis and properties of novel fluorinated epoxy resins, J. Appl. Polym. Sci., 120, 148-155 (2011).
    [49] C. M. Chung and K. D. Ahn, Synthesis and thermal modification of N-substituted functional polymaleimides, Macromol. Symp., 118, 485-491 (1997).
    [50] Y. Kita, K. Kishino and K. Nakagawa, High-quality N-substituted maleimide for heat-resistant methacrylic resin, J. Appl. Polym. Sci., 63, 1055-1062 (1997).
    [51] A. Matsumoto and T. Kimura, Synthesis of heat- and solvent-resistant polymers by radical polymerization of trifluoromethyl- substituted N-phenylmaleimides, J. Appl. Polym. Sci., 68, 1703-1708 (1998).
    [52] K. Matsumoto, Jpn. Kokai Tokkyo Koho, JP2000119502, A2,25 (2000)
    [53] G. R. Shan , Z. X. Wang , Z. M. Huang and Z. R. Pan , Free radical copolymerization and kinetic treatment of styrene with N- phenylmaleimide, J. Appl. Polym. Sci., 63, 1535-1542 (1997).
    [54] K. H. Park, J. T. Lim, S. Song, M. G. Kwak, C. J. Lee and N. Kim, Nonlinear optical polymers with novel benzoxazole chromophores: IV. Synthesis of maleimide–styrene andmaleimide– methacrylate copolymers, React. Funct. Polym.,, 40, 169-175 (1999).
    [55] D. R. Suwier, W. N. Teerenstra, B. Vanhaecht and C. E. Koning, Flexibilized styrene–N-substituted maleimide copolymers. II. Multiblock copolymers prepared from PTHF-based iniferters, J. Polym. Sci., Part A: Polym. Chem., 38, 3558-3568 (2000).
    [56] K. Ajay , Copolymerization of N‐arylmaleimides with methyl methacrylate, J. Macrom. Sci. Chem., A24, 711-715 (1987).
    [57] K. T. Lim, H. J. Lee and S. K. Choi, Synthesis of ABA triblock copolymers of N-substituted maleimides and methacrylates by group transfer polymerization, Polym. Bull., 37, 699-704 (1996).
    [58] J. Nakauchi, K. Tono, S. Sasaki and N. Matsumoto, Jpn. Kokai Tokkyo Koho, JP09012640, A2,14 (1997).
    [59] T. Iwao, M. Hiroshi, H. Megumi, A. Hirishi and K. Hisashi, Radical copolymerization of acrylonitrile, N-phenyl-, and N-p-chlorophenyl- maleimides with a methyl-styrene and thermal properties of the copolymers, Kobunshi Ronbunshu, 47, 569-574 (1990).
    [60] I. A. Salman, Al-Sagheer, A. Fakhria and M. Z. Elsabee, Copolymerization of maleimide monomers containing heterocyclic groups, J. Macromol. Sci., Pure Appl. Chem., A34, 1207-1220 (1997).
    [61] M. El-Sadek and S. Lashine, Synthesis of Certain 2,3-Disubstituted N-(4-Hydroxyphenyl)-Maleimide and Succinimide Derivatives Likely To Possess Antimicrobial Properties, Egypt. J. Pharm. Sci., 33, 839-851 (1992).
    [62] Y. Kita, H. Kanai, and K. Kishino, Jpn. Kokai Tokkyo Koho, JP09194458, A2, 29 (1997).
    [63] A. Ryttel, N-(p-Bromophenyl)maleimide and its copolymers with alkyl methacrylates, Angew. Makromol. Chem., 267, 67-72 (1999).
    [64] F. W. Harris and S.O. Norris, Phenylated polyimides: Diels-Alder reaction of biscyclopentadienones with dimaleimides, J. Polym. Sci., Polym. Chem. 11, 2143-2151 (1973).
    [65] R. A. Ryntz and R.T. Kohl, Soluble Diels-Alder aromatic polyimides, Polym. Prepr. ,24, 322-323 (1983).
    [66] K. K. Sun, Novel polymerization reaction: double cycloaddition of sydnone and bismaleimide, Macromolecules, 20, 726-729 (1987).
    [67] R. M. Ottenbrite, J.G. Smith and A.Yoshimatsu, Preparation of bis[4-(3,4-dimethylene-1-pyrrolidyl)phenyl]methane as a high-temperature reactive oligomer, Polym. Prepr. , 28, 280-281 (1987).
    [68] R. M. Ottenbrite and J.G. Smith, Diels-Alder preparation of polyimides from N,N'-di(isoprenyl) aryl diamines, Polym. Prepr.,30 ,199-200 (1989).
    [69] J. V. Crivello, Polyimidothioethers, J.Polym. Sci.,Polym. Chem.Ed.,14, 159-182 (1976).
    [70] J. E. White, M.D. Scaia and Snider,D.A. Snider, Reactions of diaminoalkanes with bismaleimides: Synthesis of some unusual polyimides, Polym. Prepr., 29, 891-899 (1985).
    [71] A. Koelling, G. Sirendran and W. J. James, Synthesis and characterization of polyimidothioethers, J. Appl. Polym. Sci., 45, 669-676 (1992).
    [72] J. V. Crivello, Polyaspartimides: Condensation of aromatic diamines and bismaleimide compounds, J. Polym. Sci. Chem. Ed, 111,1185-1200 (1973).
    [73] I. K. Varma, A. K.Gupta and Sangita, Addition polyimides. II. Polyaspartimide oligomers, J. Polym. Lett. Ed., 20, 621-627 (1982).
    [74] Z. Yerlikaya, Z. Oktem and E. Bayramli, Chain-Extended bismaleimides. I. Preparation and characterization of maleimide-terminated resins, J. Appl. Polym. Sci., 59, 165-171 (1996).
    [75] S. C. Sikes, PCT Int.Appl.WO9728219, Al, 7, P92 (1997).
    [76] Matthias, S. Gunnar and B. Richard, Ger. Offen DE4327494 Al, 23, P8 (1995).
    [77] Matthias, S. Gunnar and B. Richard, Ger. Offen DE19511859,Al, 2, P5 (1996)
    [78] Matthias, S. Gunnar and B. Richard, Ger. Offen DE4444975, Al, 20, P4 (1996)
    [79] Matthias, S. Gunnar and B. Richard, Ger. Offen DE4300020, Al , 7, P13 (1994)
    [80] http://www.katec.com.tw/naro_1.htm
    [81] Akelah and A. Moet, Cross-linked coatings by co-reaction of isocyanate–methoxymethyl melamine systems, J. App. Polym. Sci, 55, 153-161(1994).
    [82] 張立德 編著,張勁燕 校訂,“奈米大浪潮 奈米材料”,五南書局,P.5,2002。
    [83] 林景正、賴宏仁,”奈米材料技術與發展趨勢”,工業材料,153,pp95~96,1999。
    [84] 馬振基,”高分子複合材料(上)”,正中書局,新版2008。
    [85] M. M. Schwartz, “Composite Materials Handbook”, McGraw-Hill Book Co. New York, N.Y., 1984。
    [86] G. Timp, “Nanotechnology”, Springer-Verlag New York, Inc., 1999。
    [87] M. Wilson, et.al., “Nanotechnology-basic Science and Emerging Technologies”, University of New South Wales Press Ltd, 2002。
    [88] J. M. Plitzko, et., “Nanostructured Interfaces”, MRS Symposium Proceeding Vol. 727, 2002。
    [89] M. Koizumi, et., “Advanced Technology of Nano-materials”, CMC, 2001(日文)。
    [90] http://www.chemtech.com.tw/Column.php?mode=detail&id=38
    [91] 蔡宗燕, “奈米黏土-高分子複合材料之發展與應用” , 材料奈米技術專刊, 2001。
    [92] 郭文法,“納米複合材料加工應用”,工業材料,125。
    [93] P. C. LeBaron, Z. Wang and J. P. Thomas, Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci.,15, 11-29 (1999).
    [94] A. Kioul and L. Mascia, Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents, J. Non-Cryst. Solids, 175, 169-186 (1994).
    [95] 戴炘, 「酚醛樹脂/二氧化矽奈米混成防火複合材料增韌製程及其特性之研究」,國立清華大學碩士論文,2003。
    [96] 李宗銘,「非水相法合成環氧樹脂與聚醯安醯亞胺樹脂—矽化物混成奈米複合材料及其相關特性研究」 ,國立清華大學博士論文,2006。
    [97] 日本化學會,” 無機有機Nano複合物質”, 學會出版Center, 1999(日文)。
    [98] http://www.chemtech.com.tw/Column.php?mode=detail&id=46
    [99] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva and A.A. Firsov, Science, 306, 666-669 (2004).
    [100] A.K. Geim and K.S. Novoselov, The rise of grapheme, Nat. Mater., 6, 183-191 ( 2007).
    [101] 吳至彧, 「利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究」,國立清華大學工程與系統科學系碩士論文,2009.
    [102] A. Zhamu, NGPs — an emerging class of nanomaterials, Reinforced Plastics, 52, 30-31 (2008).
    [103] Ron Beech, Angstron Introduces Low Cost Graphene Platelets. Additives for Polym., 2008.
    [104] http://www.xgsciences.com/
    [105] http://only-perception.blogspot.com/2008/07/stm.html.
    [106] K.S. Novoselov1, A.K. Geim1, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva1, S.V. Dubonos and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme, Nature, 438, 197-200 (2005).
    [107] M.Crommie et., “A Phonon Floodgate in Monolayer Carbon: The first STM spectroscopy of graphene flakes yields new surprises” Lawrence Berkeley National Laboratory, 2008.
    [108] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 100, 016602-1-4 (2008).
    [109] http://nano.nchc.org.tw/main.php.
    [110] S . William, J.R. Hummers and E . O. Richard, Preparation of Graphitic Oxide, J. Amer. Chem. Soc., 80, 1339 (1958).
    [111] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim,S. Bose and J. H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci., 35, 1350-1375 (2010).
    [112] Y. Xu, W. J. Hong, H. Bai, C. Li and G. Q. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon, 47, 3538-3543 (2009).
    [113] A. Satti , P. Larpent and Y. Gun’ko, Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking, Carbon, 48, 3376-3381 (2010).
    [114] X. Wang, H. Bai, Z. Yao, A. Liu and G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films, J. Mater. Chem., 20, 9032-9036 (2010).
    [115] Y. Wang, Z. Shi, J. Fang, H. Xu and J. Yin, Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method, Carbon, 49, 1199-1207 (2011).
    [116] R. Feng, G. Guan, W. Zhou, C. Li, D. Zhanga and Y. Xiaoa, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide, J. Mater. Chem., 21, 3931-3939 (2011).
    [117] D. Han, L. Yan, W. Chen and Wan Li, Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state, Carbohy. Polym., 83, 653-658 (2011).
    [118] K. Liu, L. Chen, Y. Chen, J. Wu, W. Zhang, F. Chen and Q. Fu, Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide, J. Mater. Chem., 21, 8612-8617 (2011).
    [119] J. Yang, M. Wu, F. Chen, Z. Fei and M. Zhong, Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/ graphene oxide composites, J. Supercri. Flu., 56, 201-207 (2011).
    [120] M. M. Gudarzi and F. Sharif, Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites, Soft Matt., 7, 3432-3440 (2011).
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/67651
    ???metadata.dc.source.uri???: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH009532815.id
    Appears in Collections:[化學工程學系] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH009532815.pdf547KbAdobe PDF387View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(yzchen@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback