English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 8727565      Online Users : 117
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 歷任校長 > 徐遐生 (2002-2006) > 期刊論文 >  GALACTIC SHOCKS IN AN INTERSTELLAR MEDIUM WITH 2 STABLE PHASES


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/81035


    Title: GALACTIC SHOCKS IN AN INTERSTELLAR MEDIUM WITH 2 STABLE PHASES
    Authors: SHU, FH;YUAN, C;MILIONE, V;GOLDSMIT.DW;ROBERTS, WW
    教師: 徐遐生
    Date: 1972
    Publisher: American Astronomical Society
    Relation: ASTROPHYSICAL JOURNAL, American Astronomical Society, Volume 173, Issue 3, 1972, Pages 557-592
    Keywords: INTERSTELLAR MEDIUM
    2 STABLE PHASES
    Abstract: Quasi-steady flows of interstellar gas in a spiral gravitational field are followed for the purpose of investigating galactic shocks and the resultant processes of the formation of stars and interstellar clouds. We model the interstellar medium with two stable phases in which thermal balance is maintained through heating by low-energy cosmic rays. The problem, including transitions between the two phases, is given a general formulation but is solved in an approximation which ignores the difference in fluid velocities of the two phases. We also assume that the cosmic-ray flux is uniform in circles about the center of the Galaxy and that the relative abundances of the chemical elements are “normal.” For a spiral gravitational field with strength equal to 5 percent that of the axisymmetric field at 10 kpc from the galactic center, the density ratio at maximum and minimum compressions is 9:1 for the intercloud medium while it is 40:1 for the gas in a typical cloud. During the decompression phase of the flow, a small percentage of the mass of the clouds evaporates to become intercloud material, but this small amount is recovered in the shock. As a by-product of phase transitions, the properties of the clouds in the regions between spiral arms are such as to make their detection in 21-cm absorption very difficult. In the absence of the cloud phase, we determine the thickness of the shock layer in the intercloud medium to be typically 50 pc. An interstellar cloud immersed as a test particle in the intercloud medium experiences a dynamic rather than a quasi-static compression as it passes through the shock layer. The critical mass for the gravitational collapse of a cloud is reduced by a large factor because of the compression in the shock.
    Relation Link: http://aas.org/
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/81035
    Appears in Collections:[ 徐遐生 (2002-2006)] 期刊論文
    [物理系] 期刊論文

    Files in This Item:

    File SizeFormat
    134.pdf739KbAdobe PDF324View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(smluo@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback