English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54367/62174 (87%)
Visitors : 9377752      Online Users : 98
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 電機資訊學院 > 電機工程學系 > 會議論文  >  Image super-resolution via feature-based affine transform


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/84003


    Title: Image super-resolution via feature-based affine transform
    Authors: Chih-Chung Hsu;Chia-Wen Lin
    教師: 林嘉文
    Date: 2011
    Publisher: Institute of Electrical and Electronics Engineers
    Relation: Proc. IEEE Workshop Multimedia Signal Processing (MMSP), Hang-Zhou, China, 17-19 Oct. 2011, Pages 1-5
    Keywords: super-resolution
    affine transform
    Abstract: State-of-the-art image super-resolution methods usually rely on search in a comprehensive dataset for appropriate high-resolution patch candidates to achieve good visual quality of reconstructed image. Exploiting different scales and orientations in images can effectively enrich a dataset. A large dataset, however, usually leads to high computational complexity and memory requirement, which makes the implementation impractical. This paper proposes a universal framework for enriching the dataset for search-based super-resolution schemes with reasonable computation and memory cost. Toward this end, the proposed method first extracts important features with multiple scales and orientations of patches based on the SIFT (Scale-invariant feature transform) descriptors and then use the extracted features to search in the dataset for the best-match HR patch(es). Once the matched features of patches are found, the found HR patch will be aligned with LR patch using homography estimation. Experimental results demonstrate that the proposed method achieves significant subjective and objective improvement when integrated with several state-of-the-art image super-resolution methods without significantly increasing the cost.
    Relation Link: http:/dx.doi.org/10.1109/MMSP.2011.6093845
    http://www.ieee.org/
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/84003
    Appears in Collections:[電機工程學系] 會議論文
    [光電研究中心] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML504View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(smluo@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback