National Tsing Hua University Institutional Repository:Video object inpainting using manifold-based posture estimation
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54367/62174 (87%)
造访人次 : 14781322      在线人数 : 53
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    National Tsing Hua University Institutional Repository > 電機資訊學院 > 電機工程學系 > 會議論文  >  Video object inpainting using manifold-based posture estimation


    题名: Video object inpainting using manifold-based posture estimation
    作者: Chih-Hung Ling;Yu-Ming Liang;Chia-Wen Lin;Hong-Yuan Mark Liao;Yong-Sheng Chen
    教師: 林嘉文
    日期: 2010
    出版者: Institute of Electrical and Electronics Engineers
    關聯: Proc. IEEE Int. Conf. Image Processing, Hong Kong, China, September 26-29, 2010
    关键词: video inpainting
    object completion
    action prediction
    synthetic posture
    motion animation
    摘要: This paper presents a novel scheme for object completion in a video. The framework includes three steps: posture synthesis, graphical model construction, and action prediction. In the very beginning, a posture synthesis method is adopted to enrich the number of postures. Then, all postures are used to build a graphical model of object action which can provide possible motion tendency. We define two constraints to confine the motion continuity property. With the two constraints, possible candidates between every two consecutive postures are significantly reduced. Finally, we apply the Markov Random Field model to perform global matching. The proposed approach can effectively maintain the temporal continuity of the reconstructed motion. The advantage of this action prediction strategy is that it can handle the cases such as non-periodic motion or complete occlusion.
    相関连結: http:/
    显示于类别:[電機工程學系] 會議論文
    [光電研究中心] 會議論文


    档案 描述 大小格式浏览次数


    SFX Query


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈