English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 8733494      Online Users : 133
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 原子科學院  > 核子工程與科學研究所 > 博碩士論文  >  由六角柱型高溫氣冷式反應器爐心功率分佈計算看燃料組件設計


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86123


    Title: 由六角柱型高溫氣冷式反應器爐心功率分佈計算看燃料組件設計
    Authors: 田揚仟
    Description: GH02101013512
    碩士
    核子工程與科學研究所
    Date: 2014
    Keywords: 高溫氣冷式反應器
    Abstract: 本研究主軸為進行六角柱型高溫氣冷式反應器全爐心的有效增殖因數、熱中子通率分佈及功率分佈計算,並藉由功率分佈探討燃料組件之設計。所探討的目標以日本原子能委員會(JAEA)設計的高溫工學試驗研究爐(HTTR)為主要對象,並進一步分析同樣由JAEA設計的高溫氣冷式反應器原型機(GTHTR300)兩者設計的不同及造成的影響。
    全爐心的臨界計算使用蒙地卡羅方法。由於爐心會因為燃料的位置以及冷卻劑的流動方向在內部產生溫度分佈,因此本研究以中子截面處理程式產生溫度相依的連續點能量截面資料庫。發現若使用均勻溫度的HTTR模型代替具有詳細溫度分佈的模型對於有效增殖因數計算會有大約2 mk的高估,而在熱中子通率分佈及功率分佈上面也會造成最大13%~14%的誤差。
    在HTTR的原始設計中,為了達到良好的功率分佈,採用12種不同的鈾濃縮度,並按照特定排列方式擺放,但是在原型機GTHTR300中卻沒有這樣的設計。若將HTTR詳細溫度分佈模型改成使用均勻鈾濃縮度燃料,會發現有效增殖因數增加約24 mk。而徑向功率分佈在原始設計中較為平緩,軸向功率分佈在均勻鈾濃縮度燃料的模型中會使得底層燃料出力增加為2.5倍,造成底部燃料最高溫度超過限值1400℃。
    在原型機GTHTR300的設計中,燃料束擺放於爐心外圈,使得熱中子通率分佈及功率分佈變得較為平坦,徑向功率分佈最大值與平均值之比值約為1.2,略比HTTR的1.04高一些。此外,HTTR燃料棒與護套間有一層不流通的氦氣縫隙,由於氦氣的熱導率低,因此對底部燃料塊的燃料表層溫度造成88 K的升高。GTHTR300取消了燃料護套的設計,沒有氦氣縫隙降低了燃料棒的溫度,因而不會超過燃料最高溫限值。
    本研究初步奠定高溫氣冷式反應器爐心中子物理計算與熱流計算相互影響之計算模式,一窺爐心設計的堂奧。
    The purpose of this study is to investigate core design of high-temperature gas-cooled reactor by calculating the effective multiplication factor, thermal neutron flux distribution, and power distribution. The prismatic-type high-temperature gas-cooled reactor chosen is the High Temperature Test Reactor (HTTR) designed by Japan Atomic Energy Agency (JAEA). The prototype design of Gas Turbine High Temperature Reactor of 300MWe nominal capacity (GTHTR300) is also investigated.
    Reactor core may have certain temperature distribution due to fuel position and helium flow direction. By using cross-section generation code, temperature-dependent cross sections can be generated for the criticality calculation for effective multiplication factor, thermal neutron flux distribution, and power distribution of the core. Using uniform temperature HTTR model may cause ~2 mk overestimate of effective multiplication factor, 13% difference in thermal neutron flux distribution and 14% difference in power distribution, compared with the detailed temperature model.
    In the original HTTR core design, there are 12 different fuel enrichments used in the core for better power distribution. However, in GTHTR300, there is only one enrichment. Replacing HTTR detailed temperature model by uniform enrichment model will result in 24 mk increase of effective multiplication factor. The radial power distribution in the original design is flatter. The power generated from the bottom fuel in the uniform enrichment model will be 2.5 times of the original one, and the bottom fuel temperature will exceed the design criteria.
    In the GTHTR300 core design, fuel columns are arranged in outer region of the core, which will result in smoother thermal flux and power distribution. The maximum- to-average ratio of radial power distribution is 1.2, slightly higher than 1.04 of HTTR. In HTTR calculation, it is found that the helium gap between the fuel rod and the cladding will result in increasing of fuel temperature by 88 K. In the GTHTR300 design, by eliminating cladding and the helium gap, the temperature of fuel rod can remain under the design limit.
    This study established the preliminary coupling of reactor neutron physics and thermal hydraulic calculation, and therefore was able to look into the key issues of the core design of the high temperature gas-cooled reactor.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86123
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH02101013512.id
    Appears in Collections:[核子工程與科學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH02101013512.pdf93KbAdobe PDF209View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(smluo@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback