English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 9052596      Online Users : 102
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 原子科學院  > 核子工程與科學研究所 > 博碩士論文  >  二維多群節點擴散方法用於矩形及六角形幾何之程式開發


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86134


    Title: 二維多群節點擴散方法用於矩形及六角形幾何之程式開發
    Authors: 王瑞渝
    Wang, Jui-Yu
    Description: GH029913507
    碩士
    核子工程與科學研究所
    Date: 2014
    Keywords: 六角形幾何;節點格林函數法;粗網格有限差分法
    Hexagonal Geometry;Hybrid Nodal Green’s Function Method;Coarse Mesh Finite Difference method
    Abstract: 摘要
    此論文旨在建立一個二維多能群的節點擴散程式。本程式使用節點格林函數與粗網格有限差分法建立局部節點之解析解,並使用節點平均通率作為未知數來構成方程組。此程式可應用於任意能群之矩形節點以及六角形節點問題。
    在六角形幾何中,將節點擴散方程式橫向積分會產生非物理項。本研究採用Wagner的近似法。此方法首先忽略這些非連續之非物理項,然後透過嚴謹的中子節點平衡程式來補足這些中子項。
    有兩種耦合方法應用於此程式中。一種是傳統的一維耦合,此方法是把所有節點分成一組組的一維方程組,並透過幾何空間的掃瞄來進行計算。另一種方法是全區耦合,此方法透過多維度之中子節點平衡方程式把所有節點耦合在一起,因此可以形成一種免空間掃描的演算法則。
    除了穩態程式,本研究亦發展暫態計算方法,應用於平板以及二維矩形幾何。反應器動力學公式中的時間微分項的近似採逆向差分法,進行數個驗證問題以測試程式的準確度。所有計算結果都與其他文獻程式計算的結果一致。
    Abstract
    A 2-D multi-group nodal diffusion code is developed. The code is formulated based on Nodal Green’s Function Method together with coarse mesh finite difference method (CMFD), which is coupling with nodal averaged fluxes as unknowns. The code is applicable in either rectangle geometry or hexagonal geometry with arbitrary prompt neutron groups.
    For hexagonal geometry, singular terms arise from the transverse integration procedure. Wagner’s approximation is applied, which omits these terms and then, following Fitzpatrick and Ougouag, we compensate for the omitted terms through rigorous nodal balance equations.
    There are two different coupling methods used in this code development. One is traditionally 1-D coupling, which is achieved by spatial sweeping through a set of 1-D equation systems. Another is full-scale coupling, which is achieved by using multi-dimensional nodal balance equation to couple all the spatial nodes. Therefore, a “sweep-free” algorithm is formed.
    Transient calculations routine is further developed for rectangle geometry and slab geometry. Backward difference method was used to approximate the time derivative terms in space-time kinetic equations.
    Several benchmark problems have been performed. All the results agree well with results of other codes in the literatures.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86134
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH029913507.id
    Appears in Collections:[核子工程與科學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH029913507.pdf226KbAdobe PDF306View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(smluo@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback