English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 8717700      Online Users : 103
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 工學院  > 材料科學工程學系 > 博碩士論文  >  高分子殘留應力與缺陷演變及電場誘發表面圖形


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86193


    Title: 高分子殘留應力與缺陷演變及電場誘發表面圖形
    Authors: 彭竣翔
    Jyun-siang Peng
    Description: GH029631816
    博士
    材料科學工程學系
    Date: 2014
    Keywords: 聚一氯對二甲苯;殘留應力;伽瑪輻射;色心;自由基;電場誘發結構
    Abstract: 本論文主要探討高分子薄膜殘留應力與外加電場誘發週期性圖形及塊材輻射處理後退火行為。第一部份製備了聚一氯對二甲苯 (Parylene C)薄膜與矽微懸臂樑雙層結構。薄膜呈現連續平整且矽微懸臂樑在鍍膜後略微往上翹曲,此為薄膜與基板間熱膨脹係數不同造成。由其曲率的改變以理論推測鍍膜溫度為73 oC。薄膜與基板內的應力分布呈線性且在介面處產生不連續。第二部分為伽瑪輻射照射聚4-甲基-1-戊烯 (PMP)的色心 (color center)產生的色心湮沒 (annhilation)動力學機制,其可見光穿透率損失隨輻射累積照射劑量及退火溫度增加而增加,並產生紅位移 (bathochromic)於紫外光/可見光光譜。吸收率數據隨時間變化推測其產生過程為一級 (first order)反應。照射之聚碳酸酯 (PC)內同時存在永久及可經由退火消除的色心,後者可藉由高溫退火而湮沒。色心湮沒機制為一級反應且樣品吸收率與色心濃度成非線性正向相關 (nonlinearly proportional)。第三部分聚甲基丙烯酸甲酯 (PMMA)與聚甲基丙烯酸-2-羥基乙酯共聚物 (PHEMA)產生之自由基於升溫退火下湮沒機制,兩者均推測有三種以上自由基存在。PMMA與PHEMA的Ra與Rb自由基衰退過程為二級反應,PMMA之Rc自由基為先一級後轉為二級。長時間PHEMA的之Rc自由基衰退過程為二級反應。兩者同劑量下劑量與退火溫度,自旋濃度隨退火時間增加而下降。最後為電場誘發聚PC與PMMA薄膜不穩定產生具週期性規律的柱狀圖形。不同薄膜厚度樣品均於實驗初期即產生柱狀結構,薄膜越薄者圖形密度也越低且尺寸較小,且均隨時間增加而上升,趨勢逐漸減緩,於40分鐘後圖形穩定,成長過程與擬合曲線相符。比較不同退火溫度之薄膜穩定圖形,可得出退火溫度較高者,點狀圖形直徑較大且間距較寬。綜合以上兩因素樣品之週期性於同厚度薄膜下,退火溫度越高則週期越長;相同退火溫度下薄膜越厚則週期越長。
    In the thesis, we studied residual stresses and electric field induced patterns on polymer thin films as well as annealing behavior of polymeric materials after irradiation. In the first part, we built a Parylene C/Si bilayer cantilever structure. The Parylene C thin films were continous and flat on the top of cantilevers. Due to the mismatch of thermal expansion in this system, cantilevers curved and bent towards up. We inferred that the deposition temperature was 73 oC by observing the curvature variation. Moreover, the residual stress distribution was linear in both layers and discontinued on the interface.
    In the second part, we studied the generation kinetics of color centers in gamma ray irradiated poly(4-methyl-1 pentene) (PMP). The transmittance loss in irradiated PMP with increasing gamma ray dose and annealing temperature, and present bathochromic shift in UV/ Vis spectra. The absorptance data were found in good agreement with the first order reaction. On the other hand, the color centers of polycarbonate (PC) will annihilated at elevated temperature after irradiated. The measured absorptance data followed first order mechanism, and the absorptance was nonlinearly proportional to the concentration of annealable color centers. In the third part, we discussed the radicals annihilation of gamma ray irradiated poly(methyl methacrylate) (PMMA) and Poly(2-hydroxyethyl methacrylate) (PHEMA) at elevated temeratures. We inferred that both PMMA and PHEMA had three different radicals at least. The radicals Ra and Rb followed second order process for PMMA and PHEMA. Rc of PMMA in a short time period followed a first order decay and turned into second order in the long term. Rc of PHEMA followed second order kinetics at longer times. For a given dose and annealing temperature, the concentration of each radical decreased with time. In the last part, we investigated electric field-induced periodical pillar patterns via thin film instability of PC and PMMA. The pillar patterns grew at the initial stage of experiments for both polymers. Thepillars were smaller and less dense for thinner film, and increasing with annealing time. The growth rate was decreased gratually and steadied after forty miniutes. The process of growth were in good agreement with fitted curves. Comparing steadied patterns at different annealing temperatures,diameters and space between pillars were largerat higher annealing temperature. Combining these two factors, we concluded that the periodicity was increasing with increased annealing temperature for the films with the same thickness; the periodicity was increasing with increased film thickness for the same annealing tempaerature.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86193
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH029631816.id
    Appears in Collections:[材料科學工程學系] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH029631816.pdf347KbAdobe PDF169View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(smluo@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback