English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 9067430      Online Users : 94
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86582

    Title: 薛丁格方程式的局部適定性
    Authors: 游步庭
    Yu, Pu-Ting
    Description: GH02101021602
    Date: 2014
    Keywords: 薛丁格
    Schrodinger equation
    Abstract: 本論文主要是探討 線性的 薛丁格方程式 及波方程式 的 Stric hartz artz artz artz 估計,在介紹完 Strichartz估計,我們針對一組非線性 薛丁格方程式,並應用 Strichartz估計去證明在某些空間下該非線性薛丁格方程式的局部適定性 。
    This dissertation is focusing on introducing and proving Strichartz estimates for linear Schrodinger equation and wave equation and their application to the Cauchy problem of Schrodinger equation.
    We will use some techniques of real analysis to prove them, so at the rst, we will introduce some tools of real analysis such as some operations, theorems of real analysis, and any tools we will use in order to avoid confusion.
    Second, we focus on proving Strichartz estimate for linear Schrodinger equation and wave equation. For Schrodinger eqaution ,the most important tool we apply is Hardy-Littlewood-Sobolev Theorem which helps us transform a property of solutions of Schrodinger equation into a estimate under the so-called mixed norm.
    For Wave equation, we focus on R3, and the main idea is we consider homogeneous case with given initial datum and inhomogeneous case but with zero initial datum, respectively, and derive estimates we want respectively, nally combine them and apply Triangle inequality to get the Strichartz Estimate.
    And in the last section, we show a application of linear Strichartz estimate for a Schrodinger equation which indicates under some certain conditions and speci c spaces, the local well-posedness of a nonlinear Schrodinger equation will be assured.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86582
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH02101021602.id
    Appears in Collections:[數學系] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH02101021602.pdf116KbAdobe PDF135View/Open


    SFX Query


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback