English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 8743400      Online Users : 97
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86596


    Title: 平面封閉凸曲線的幾何探討
    Authors: 陳時霖
    Chen, Shin-Ling
    Description: GH02101021612
    碩士
    數學系
    Date: 2014
    Keywords: 幾何
    Geometry
    Abstract: 在第一節到第五節,我們介紹一些重要的曲線幾何量,如彎曲,扭轉,支撐函數和寬度。在這篇論文中接下來的部分,我們討論一些著名的幾何不等式,如等周不等式,Gage等周不等式和Wirtinger不等式。此外,我們引入了曲線的一個重要思想 - 平行曲線。使用平行曲線的想法,我們可以得到本文的我們最終的目標 - 熵估計。
    In the first five sections we introduce some important geometric quantities of a curve, such as curvature, torsion, the support function and the width. In the rest part of this thesis we derive some famous geometric inequalities such as the isoperimetric inequality, Gage’s isoperimetric inequality and Wirtinger inequality. Also we introduce an important idea for a curve – the parallel curve. Using the idea of the parallel curve we can obtain our final goal of this thesis – the entropy estimate.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86596
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH02101021612.id
    Appears in Collections:[數學系] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH02101021612.pdf77KbAdobe PDF143View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(smluo@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback