English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 8706671      Online Users : 113
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 電機資訊學院 > 資訊工程學系 > 博碩士論文  >  影像光譜分割使用突出取向圖形設計的學習完全成對關係


    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86642


    Title: 影像光譜分割使用突出取向圖形設計的學習完全成對關係
    Authors: 曾韋智
    Tseng, Wei-Chih
    Description: GH02101062623
    碩士
    資訊工程學系
    Date: 2014
    Keywords: 光譜分割;影像分割;突出
    spectral segmentation;image segmentation;saliency
    Abstract: 將一張影像裡有不同特徵的部分分群一直是個影像分割再探討的問題。光譜分割是近年來被廣泛使用的其中一種方法。建立在光譜分割的方法下,我們所要做的事情是建立一個關係矩陣,如何用一個好的方法建立一個好的關係矩陣就是我們此篇論文的目的。我們著重在圖形設計的架構,我們的構圖想法來自於圖形突出部分,圖形突出部分比較符合我們人看圖片的習慣與取向,使用突出部分的想法來構圖,使得背景與背景、有意義的區塊與區塊間的關係更加緊密,如此使得區塊與背景之間的關係權重能被合理分配,我們預想希望被切出的區塊也較容易被切割出來,再經由學習完全成對關係的方法,將稀疏矩陣學習成完全成對矩陣,最後使用光譜分割來得到我們的結果。我們的結果顯示我們改善了因為主體與背景太過相似而造成主體難以被區分出來的問題,此外我們也改善平滑的區塊卻被區分成不同區塊的問題。
    Spectral Segmentation is one of the methods used extensively to separate group with different characteristics for image segmentation in recent years. In image spectral segmentation, we should build up a similarity matrix. In this paper, we propose a method to build up the similarity matrix. We focus on the graph design based on salience, which fits the habit of human vision. Use the notion of salience to design a graph so that backgrounds and meaningful regions are more compact. In the graph, the weight of the Affinity Matrix between background and regions can be distributed reasonably. The region which we expect is more likely to segment out and then we learn to get a Full Pairwise Affinities Matrix. Finally, we run spectral segmentation with our Full Pairwise Affinities Matrix by using the graph to get the segmentation result. Our results exhibit the improvements for objects with similar colors to the background so that some segmentation algorithms are usually hard to find out the boundary of objects. Moreover, we improve the problem of unexpected boundary at smooth surfaces, which is caused by spectral segmentation.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86642
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH02101062623.id
    Appears in Collections:[資訊工程學系] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH02101062623.pdf179KbAdobe PDF185View/Open


    在NTHUR中所有的資料項目都受到原著作權保護,僅提供學術研究及教育使用,敬請尊重著作權人之權益。若須利用於商業或營利,請先取得著作權人授權。
    若發現本網站收錄之內容有侵害著作權人權益之情事,請權利人通知本網站管理者(smluo@lib.nthu.edu.tw),管理者將立即採取移除該內容等補救措施。

    SFX Query

    與系統管理員聯絡

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback