English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 9058356      Online Users : 83
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 電機資訊學院 > 資訊工程學系 > 博碩士論文  >  在電力系統中用多代理人增強式學習法來學習二級電壓之調控

    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86658

    Title: 在電力系統中用多代理人增強式學習法來學習二級電壓之調控
    Authors: 周煜翔
    Zhou, Yu-Xiang
    Description: GH02101062629
    Date: 2014
    Keywords: 電壓控制;增強式學習法;多重智慧型代理人系統
    Voltage control;Reinforcement learning;Multi-agent system
    Abstract: 在現今電力系統的發展中,隨著電力網路規模的擴大以及負載端對電力需求的提升,電力網路越來越複雜的情況下,我們需要一個有效的方式以應付電力網路出現的各種突發狀況。我們提出一個多重智慧型代理人系統,將之應用於電壓的調控上。在我們的系統中,當電壓發生異常時,代理人會偵測並且透過溝通合作的方式來解決電壓異常的問題。此外,代理人透過增強式學習法以得到一個較佳的調控方式。基於分散式的特性,我們將增強式學習法分成了兩個部份。另外,為了增進調控的效能,我們考慮到了調控對於鄰近區域的影響。我們將提出的方法在多次的實驗中進行評估,該方法在多次的實驗中得到驗證。
    To protect power systems against different severe disturbances, the ways to effectively control voltage have become the important issue in power systems. In light of that, a Multi-Agent System (MAS) structure has been proposed to deal with the issue of voltage regulation. With our system, once the voltage violations occur, the agents would detect the abnormality and try to eliminate these voltage violations by injecting the reactive power. Besides, to make a good decision under abnormal conditions, a reinforcement learning scheme has been proposed to provide better and faster regulation. Based on the concept of distributed control, there are two parts in our reinforcement learning scheme, self-regulated learning and cooperative learning. On the other hand, an altruistic rate has been proposed to consider the impact of other neighbor agents. The performance of the proposed multi-agent reinforcement learning are demonstrated using various conditions in a benchmark of power networks.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86658
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH02101062629.id
    Appears in Collections:[資訊工程學系] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH02101062629.pdf140KbAdobe PDF95View/Open


    SFX Query


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback