English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54371/62179 (87%)
Visitors : 9045172      Online Users : 121
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTHU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    National Tsing Hua University Institutional Repository > 工學院  > 化學工程學系 > 博碩士論文  >  以環境友善的製程製備聚苯醚及其衍生物

    Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86991

    Title: 以環境友善的製程製備聚苯醚及其衍生物
    Authors: 陳厚元
    Chen, Hou Yuan
    Description: GH02102032546
    Date: 2015
    Keywords: 聚苯醚 環境友善 高分子配位基 水溶性觸媒 非線性結構
    poly(2,6-dimethyl-1,4-phenylene oxide) eco-friendly polymer ligand water-soluble catalyst branched polymer
    Abstract: 此研究分為兩個部分,分別是以環境友善的製程製備聚苯醚(PPO)以及合成非線性結構的聚苯醚以提升其在產業上應用價值。在第一部分中,聚苯醚由2,6-二甲基苯酚(DMP)以水為溶劑氧化聚合而成,並使用由銅和新型自製的高分子配位基(衣康酸氨-丙烯酸共聚物)而成的水溶性錯合物作為催化溶劑。在聚合反應中,我們嘗試使用不同比例、分子量的單體合成高分子配位基,並測試其活性與分子量控制情形。不同濃度的銅離子、鹽酸、高分子配位基、介面活性劑等變因都已最佳化,進而得到聚苯醚的最佳產率93%(分子量=3700,分子量分佈=2.12),產率比我們之前發表的以精胺酸(arginine)為配位基的結果72%高出許多。同時,此最佳化條件也同樣適用於二甲苯酚與2-烯丙基-6-甲基苯酚的共聚反應,且得到95%的高產率(分子量=3000,分子量分佈=2.5),而此共聚物多了烯丙基的支鏈理應具備熱交聯特性以提升應用上的可能性。另一方面,我們也嘗試催化劑的循環使用,最後在5次的重複使用後,催化劑仍能保持一定的活性。
    In this thesis, eco-friendly synthesis methods of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) derivatives and synthesis of branched PPOs have been investigated. First, PPO was synthesized by oxidative polymerization of 2,6-dimethylphenol (DMP) in water using a water-soluble complex of copper and novel polymer ligands, poly(itaconic amide acid-co-acrylic acid)s. In the polymerization of DMP, the polymer ligands with various monomer ratios of itaconic amide acid:acrylic acid (4:6 and 2:8) were used, and effects of molecular weight and ratio of the polymer ligands on the polymerization of DMP were studied. The polymerization conditions were optimized varying precursor copper complexes, concentration of hydrogen chloride, molecular weight and monomer ratio of the polymer ligands, surfactant, and temperature, resulting in PPO with the best yield of 93% with number average molecular weight (Mn) of 3700 and molecular weight distribution (Mw/Mn) of 2.12. This yield is higher than that of previously reported conditions using arginine ligand in water (72%). Furthermore, the optimum condition was applied in copolymerization of DMP and 2-allyl-6-methylphenol (AMP) to provide their copolymer in 95% yield (Mn = 3000, Mw/Mn = 2.5). This allyl containing copolymer is expected to have thermally crosslinkable property; therefore its crosslinking reaction was carried out. On the other hand, recovery of the catalytic system of copper-polymer ligand was examined. The catalytic system maintains its activity even after recycling five times.
    Second, to obtain PPOs with higher number of crosslinkable groups, DMP was copolymerized with bifunctional bisphenol A (BPA) or trifunctional 1,1,1–tri(4-hydroxyphenol)ethane (THP) in the presence of copper complex to produce a linear poly(2,6-dimethyl-1,4-phenylene oxide-BPA) (PPO-BPA) and a branched polymer poly(2,6-dimethyl-1,4-phenylene oxide-THP) (PPO-THP) using methanol as solvent. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was also synthesized by similar procedure for comparison. The obtained polymers were characterized by 1H NMR spectroscopy, viscosity measurement, dynamic light scattering analysis, differential scanning calorimetry, and thermogravimetric analysis. These polymers were used for termination reaction using 4-vinyl-benzyl chloride as a functionalized group in order to add double bonds at the polymer ends to form corresponding polymers (PPO-THP-ST, PPO-BPA-ST, and PPO-ST). The vinyl terminal groups are crosslinkable by thermal annealing. We estimated the vinyl-benzyl group ratio of the polymers by peak integral ratio of 1H NMR spectra. PPO-THP-ST contains higher vinyl-benzyl group ratio than that of linear polymers, resulting in higher reactivity in annealing reaction than the linear polymers. PPOs have often been used in application of printed circuit boards (PCBs). Therefore, we measured the dielectrical constant (Dk) and dissipation factor (Df) which are the most important factors in such application. Dk and Df values of the linear and branched polymers were compared.
    URI: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/86991
    Source: http://thesis.nthu.edu.tw/cgi-bin/gs/hugsweb.cgi?o=dnthucdr&i=sGH02102032546.id
    Appears in Collections:[化學工程學系] 博碩士論文

    Files in This Item:

    File SizeFormat
    GH02102032546.pdf239KbAdobe PDF230View/Open


    SFX Query


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback