國立清華大學102學年度碩士班考試入學試題

系所班組別:數學系 數學組

考試科目 (代碼):高等微積分 (0101)

共_1_頁,第_1_頁 *請在【答案卷、卡】作答

Advanced Calculus

- 1. (12 pts) A function $f: \mathbf{R} \to \mathbf{R}$ is periodic if there exists a number p > 0 such that f(x+p) = f(x) for all $x \in \mathbf{R}$. Prove that a continuous periodic function is bounded and uniformly continuous on \mathbf{R} .
- 2. (12 pts) If $f:[a,b]\to \mathbf{R}$ is monotone increasing, prove that f is Riemann integrable on [a,b].
- 3. (10 pts) Determine whether the curve described by the equation

$$F(x,y) = x^3 + y + \sin(xy) = 0$$

can be written in the form y = f(x) in a neighborhood of (0,0).

- 4. (20 pts)
 - (a) Show that $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$.
 - (b) Show that the series $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ converges on R to a continuous function f(x).
- 5. (10 pts) Let $f:[a,b] \to \mathbb{R}$ be a positive and continuous function. Prove that

$$\left[\int_a^b f(x) dx\right] \left[\int_a^b \frac{1}{f(x)} dx\right] \ge (b-a)^2.$$

6. (12 pts) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at the point x_0 . Prove that f has the Lipschitz property at x_0 ; i.e., there are constants M and $\delta_0 > 0$ such that $||x - x_0|| < \delta_0$ implies

$$||f(x)-f(x_0)|| \leq M||x-x_0||.$$

7. (12 pts) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (e^x \cos y, e^x \sin y).$$

Show that f is locally invertible near every point, but is not invertible.

8. (12 pts) Let $f:[1,\infty)\to \mathbf{R}$ be continuous, and suppose that $\lim_{x\to\infty} f(x)$ exists. Use the Weierstrass approximation theorem to prove that f can be uniformly approximated on $[1,\infty)$ by a function g of the form g(x)=p(1/x), where p is a polynomial.