國立清華大學命題紙

99 學年度生命科學院丙組碩士班入學考試

科目______近代物理____科目代碼___0402___共____頁第____頁 *請在【答案卷】內作答

- 1. (5%) What is the spin angular momentum of a proton (in unit of $h/2\pi$)?
- 2. (10%) Consider the one-dimensional harmonic motion of a particle with energy

 $E = \frac{p^2}{2m} + \frac{kx^2}{2}.$

Derive the ground-state energy from the Heisenberg's uncertainty relation $px \ge h/2\pi$ where h is the Planck's constant. Do not solve the Schrodinger equation.

- 3. (10%) Consider a particle with mass m within a cube with volume L^3 . Write down the Schrodinger equation and derive the quantized energy of the ground-state.
- 4. (5%) What is the relativistic momentum of a particle with rest mass m and speed v = 0.8c (c is the speed of light)?
- 5. (5%) A particle decays at rest with a lifetime t_0 . What is the lifetime t(v) of this particle moving at a speed of v = 0.6c (c is the speed of light)?
- 6. (5%) The classical model of hydrogen atom where an electron moves in a circular orbit around a heavy proton is not correct. In the Bohr's model of hydrogen atom, he introduced a very important condition for the circular motion of electron. Explain Bohr's quantization condition.
- 7. (5%) Describe one experiment which indicates that parity conservation is violated.
- 8. (5%) Consider a particle with mass m and speed v. What is the de Broglie wavelength of this particle?

國立清華大學命題紙

99 學年度生命科學院丙組碩士班入學考試

科目_____近代物理____科目代碼___0402__共____頁第_____頁 *請在【答案卷】內作答

9. (50%) Explain

- (a) Stefan's law of blackbody radiation.
- (b) Magic numbers of nuclei.
- (c) Chandrasekhar limit in astronomy.
- (d) Bragg equation.
- (e) Work function.
- (f) BCS theory.
- (g) Standard model of particle physics.
- (h) Bohr's correspondence principle.
- (i) Space quantization.
- (j) Curie's law.