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ABSTRACT

We follow the perturbations in the flow of interstellar gas which result from steady forcing by
spiral gravitational fields of various strengths. The density response is quite nonlinear even if the
amplitude of the spiral field maintained by the disk stars is only a small fraction of the basic
axisymmetric field. An analytical study of the properties of slightly nonlinear flows yields certain
results which are qualitatively similar to those found numerically for fully nonlinear flows. Galactic
shocks arise naturally, indeed necessarily, if the strength of the underlying spiral gravitational field
exceeds a certain critical value.

The breadth of the zone of high gas compression depends critically on whether the Doppler-
shifted phase-velocity of the stellar density wave is greater than or less than the *“effective acoustic
speed” of the gas. In the former case, very narrow compression zones result; in the latter, quite
broad zones. This distinction may explain why some galaxies have narrow optical arms while
others have broad optical arms.

In addition, a certain range of values for the intrinsic frequency of the wave gives rise to ultra-
harmonic resonances which can introduce secondary compressions of the interstellar gas. This
result may relate directly to the origin of the Carina spiral feature in our own Galaxy as well as to
the phenomena of branches, spurs, and feathers which are often seen in external spiral galaxies.

Subject headings: galactic structure — interstellar matter

I. INTRODUCTION

Nonlinear solutions for the large-scale flow of interstellar gas in the presence of a
spiral gravitational field have recently received considerable theoretical attention
(Fujimoto 1966; Roberts 1969a; Roberts and Yuan 1970; Vandervoort 1971; Shu
et al. 1972; see also Mathewson, van der Kruit, and Brouw 1972 and Roberts 1972
for observations which bear on the galactic shock phenomenon in MS51 and in
the Perseus arm region of our own Galaxy). In this paper we wish to fill some important
gaps left by the previous investigations: (1) What is the relation between flow solutions
which contain shocks and those which do not? (2) What conditions must be fulfilled
in a normal spiral galaxy for the zone of high gas compression (and, presumably, the
zone of active star formation) to be very narrow? To be quite broad ? (3) Can non-
linear effects account for some of the secondary arms, spurs, and feathers often seen
in external galaxies?

Question 1 is relevant because Vandervoort (1971) has found nonlinear gaseous
density waves which do not contain shocks. Thus, do the galactic shocks in the solu-
tions given by Roberts (1969a) and by others, exist as a postulate additional to the
usual assumptions of the density-wave theory (cf. Piddington 1973), or do they occur
as a necessary consequence of the theory for waves of sufficiently large amplitudes?
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Question 2 is significant because the motivation to search for flow solutions con-
taining shocks arose originally to meet the challenge posed by galaxies with remarkably
thin spiral arms—galaxies such as NGC 5364 which has H 11 regions lined up as
“beads on a string.”” However, a complete theory must also be able to accommodate
the galaxies with broad optical arms—galaxies such as M33. Thus, do the wave
amplitudes in galaxies with broad arms not reach sufficiently large values to produce
galactic shocks, or are the zones of high gas compression in such galaxies broad
despite the production of shocks?

Question 3 is important because in many galaxies, bits and pieces of spiral features
coexist with a *“grand design”’ of spiral structure (see Lin 1971; cf. Piddington 1973).
It is natural to associate these bits and pieces with sheared material arms whose origin
lies with the local gravitational instability of the interstellar gas (Goldreich and
Lynden-Bell 1965; Julian and Toomre 1966). But could some of these features also be
associated with the nonlinear response of the gas to forcing by an ordered spiral
gravitational field ?

This paper, then, attempts to examine the above issues with a survey of the non-
linear phenomena which may have an important qualitative effect on the compressional
history of the interstellar gas. Our first task is, thus, to review why the basic equations
demand that the density response of the interstellar gas be generally quite nonlinear
even if the amplitude of the spiral gravitational field is only a small fraction of the
basic axisymmetric gravitational field.

II. BASIC EQUATIONS AND CONCEPTS

Before we begin the theoretical development, we shall recapitulate the fundamental
equations and concepts. Our calculations concern the nonlinear response of the inter-
stellar gas subjected to forcing by an imposed spiral gravitational field which is
assumed to be supported primarily by the disk stars. The gravitational potential in the
central plane of the galactic disk is assumed to be given by the linear theory, and,
thus, to have the following form when written in polar coordinates (w, ¢ = 0 — Q,¢)
which rotate with the pattern speed 2, = w/m:

B = By(w) + A(w)cosy. €))

In the above equation, V(=) is the unperturbed axisymmetric potential; A(w) is the
amplitude of the perturbation spiral potential; and y is the phase function

x = O(w) — mg. Q)

The integer m equals 2 for two-armed spirals.

For tightly wrapped spiral waves, ®(w) is a rapidly varying function and A(=) is a
slowly varying function. In this asymptotic approximation, equipotential curves for
the spiral gravitational potential are given by the lines of constant phase: y = constant.

For most purposes the linear theory is adequate for the dynamics of the disk stars.
However, because the response of a particular component of the galaxy to a given
spiral field is roughly proportional to the inverse square of the relevant dispersive
speed, the density response of the interstellar gas can be fully nonlinear even if the
perturbation density of the disk stars amounts to only a few percent of the unper-
turbed value.

In the analysis of this paper, we follow Roberts (1969a) and adopt an isothermal
one-component model of the interstellar medium characterized by a uniform ““effective
speed of sound,” @ = 8 km s~*. This model provides an adequate description as long
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as we limit ourselves to the discussion of phenomena with characteristic length scales
larger than, say, 102 pc.!

In the linear theory of density waves, all perturbation quantities which arise in
response to forcing by the potential (1) are found to vary much more rapidly in the
direction perpendicular to the equipotential curves than in the direction along them.
Assuming a similar behavior for the forced nonlinear density waves in the gaseous
component, we are motivated to introduce the curvilinear coordinate system (n =
—x + m, £) defined so that

dn = —kdw + mdp,  df = —mi;’—’ ~ kwdd, 3)

where the radial wavenumber k is given by ®'(w) and is negative for trailing spirals.
Our definition differs from that used by Roberts (1969a) and Shu et al. (1972) essen-
tially by a multiplicative factor m/sin i, where tan i = —m/kw, and by an additive
constant in 7, chosen so that n = 0 describes asymptotically the locus of the minimum
of the spiral potential. For fixed =, note that one period, 2, of ¢ corresponds to m
periods, m2m, of 7.

To lowest order for large |k|w, i.e., for small sin i, the spiral gravitational field is
directed in the n direction and has a maximum strength of

F = (k? + m2w~2) 24/ Q2 4)

when expressed as a fraction of the axisymmetric field wQ2? = B,'(w). In this paper
we shall assume F not to be very large in comparison with sin 7. We wish to express
the steady gas dynamical equations in the (5, £) coordinates. Thus, we first resolve
the fluid velocity vector into its y and ¢ components:

Uy, = Uy + Upi Ug = Ugg -+ Uey (5)

where the subscript O refers to the basic state and the subscript 1 refers to the per-
turbations. Along a streamline our position in the galaxy is given by the condition

dé _ (uzo + ug)
1~ (o + th) ©

If we now keep only the lowest-order terms in the asymptotic approximation
sin i « 1, the gas dynamical equations governing the perturbed flow read (cf. egs.
[9]-[11] of Roberts 1969a, or eqs. [30] of Shu et al. 1972):

(oo + o1)(Uyo + U,) = constant = ogltyg , (7a)

aunl 2”51 - F’CD'Q Sin 7])

_ (
an Ultro + t) (o + Uy)* — a@® ’ (75)
Uy Un1
- _m 7c
877 (uno + unl) ( )

1 In this paper we shall not discuss the detailed relation between high gas compression and the
process of star formation. The dependence of the rate of star formation on gas compression is
highly sensitive to the model adopted for the structure of the interstellar medium on a small scale.
The two-phase model of the interstellar medium (Pikel’ner 1967; Field, Goldsmith, and Habing
1969; Spitzer and Scott 1969) has accumulated considerable observational support (Hughes,
Thompson, and Colvin 1971; Radhakhrishnan et al. 1972; Mebold 1972), and this is the model
adopted in the calculations of Shu ez al. (1972). These last-mentioned authors found the large-scale
dynamics of the two-phase model to be very similar to the one-component isothermal model, but
their picture for the compression of individual interstellar clouds is quite different. Somewhat
different points of view on the problem of cloud formation in the two-phase model have been
taken by Zel’dovich and Pikel’ner (1969) and Biermann et al. (1972).
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In the above equations, oo(=r) is a reference surface density; whereas u,,, #x, U, and
V are the velocity parameters

Upo = ‘OJ'(Q - Qp) sin i ) Ugg = W(Q - Qp) cos i ’ (8a’)

U= m1sini)wQ, (8b)

V =(m 'sin i)i(wzﬂ) = (m~'sin i)fﬁ' (8¢)
do 2Q

Of these, the parameter u,, is especially significant since it corresponds to the com-
ponent of the circular motion which is perpendicular to the wave front, wQ sin i,
measured relative to the phase velocity of the background spiral density wave,
w/(k? + mPw~2)12 = wQ, sin i. Ignoring the minus sign, we shall henceforth refer to
u,o as the Doppler-shifted phase-velocity.

As long as F is not large in comparison with sin i, we can regard uyq, Uz, U, and V
to be constants when we integrate equations (7) along a streamline. In the order of
approximation considered here, we may replace the requirement that the flow be
single-valued in space by the requirement that the flow be periodic in 5 with period 2.

Appendix D of Shu et al. (1972) shows that the effective acoustic speed a and the
Doppler-shifted phase-velocity u,, can generally be expected to have numerically
similar values. On the other hand, u,,, U, and ¥ are considered to be of the same order
in the ordering scheme sin i « 1; while wQ, w«?/2Q, and u,, are considered to be one
order larger. Clearly, if in addition F is assumed to be O(sin i), equations (7b) and
(7c) would imply that u,, and u,, are of the same order as u,,, etc. By the same token,
equation (7a) then implies that o, is of the same order as the unperturbed density a,,.
Thus, the density response of the interstellar gas is generally quite nonlinear even if the
am]c)ilitude of the spiral gravitational field is only a small fraction of the unperturbed
field.

III. THE SLIGHTLY NONLINEAR REGIME
We begin our mathematical discussion with an analytical treatment of the slightly
nonlinear regime which is similar to that given by Vandervoort (1971) and by Yuan
Eprivate communication).? For easy comparison with the results of the linear theory
cf. Lin, Yuan, and Shu 1969), we first define the dimensionless parameters
v=m(Q, — Q)fx = —u,/QUV)2, (9a)
x = (k? + m?*w~%a?/«? = a?/2UV . (9b)
If we further nondimensionalize the velocity variables
u = u,y/UV)2, v=u4lV, (10)

we can write equations (7b) and (7¢) in the dimensionless form

ou (v — fsinn) v u

SR e e R T ) (1

2 The analysis of Vandervoort is more involved than the discussion given here partly because
he considers self-sustained density waves in the gaseous component while we ignore the self-
gravity of the gas and merely compute its response to a given forcing function.
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where f is the scaled field strength
_ _ (Q\2( mF
f = FaQ2V = (-’:) (sin i) . (12)

For the parameter regime f < 1, we look for solutions of equation (11) in the form
of series expansions in powers of f:

u= i Sffug, v = if’vs. (13)

The substitution of equations (13) into equations (11) yields the following set of
equations which are to be solved successively for u;, vy; Us, vg;...:

ou . ov
2 _1 = —-—1 — = :
v x) o + w; =vsinng, v 7 u, =03 (14a)
ou ou . ov ov
2 2 — 1 _ 2 — ‘1 .
? - x) £ + vy = 2vuy E + u(v, — siny), v——-an Uy = Uy — 7 (14b)

Consistent with equations (11), we may look for solutions periodic in % in which u
is an even function of » and v is an odd function. In particular, equations (14) admit
solutions in which the odd and even terms have the Fourier series expansion

G=12,...):

9
Ugj—1 = z dgj-1,21-1 €08 (2] — 1)y,
=1

i
U2j-1 = 2 Baj-1,21-1 8in 2/ — 1)y, (15a)
=1
i i
Ugy = Qg4 0 + Z Og4,21 COS 211] s Vgj = Z 621'21 sin 217] . (ISb)
=1 I=1

The substitution of equations (15) into equations (14) results in the following succes-
sive expressions for the dimensionless Fourier coefficients (each of order unity):

a;; =l —»? +x)71, Bri=(1=»*+x)"%; (16a)
14+ 202 +
ago = —%a11Bu1, Ogg = _051?2311 [1 _ 42:2 — chg] ?
_ B[ =3+ x |
= T4 = » (160)

Note that the procedure given above fails at an infinite but countable number of
points because of the presence of the “resonant denominators” in the coefficients
(16). In general, the coefficients e, and B, become infinite at a radius where

V2 — x = (Up? — a®2UV =n~2, n=+s. (17)

We adopt the sign convention of taking » negative when v is negative (inside of co-
rotation) and » positive when v is positive (outside of corotation). Except forn = +1,
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we are dealing with ultraharmonic resonances since for x = 0 (i.e., zero pressure),
they occur where the gas meets the wave at a frequency which is 1/n times the epicyclic
frequency. Note that finite pressure shifts the » = +1 resonances, the “Lindblad
resonances,” beyond the principal range, —1 < v < 1, where stellar density waves
can propagate. For future reference, we also note that the resonance limits for n — +o0
occur where u,, = *a, i.e., where the basic flow is sonic. Moreover, whether the
higher-harmonic response tends to reinforce or to interfere destructively with the
fundamental response depends on whether we are on the high-frequency side,
v2 > n~2 4+ x, or on the low-frequency side, v> < n~2 4 x, of the ultraharmonic
resonance.

In the neighborhood of an ultraharmonic resonance, we require a more sophisticated
treatment of the nonlinear gas dynamical equations. In § V, we shall take a numerical
approach.®

When we are not near resonances, we may regroup equations (13) and (15) and
write the solutions in terms of their various Fourier components:

u= A4, + ZAscossn, v=ZBssinsn. (18)
s=1 s=1

The Fourier coefficients for the odd and even terms are given by (/ = 1,2,3,...)

0 0 o]
— 25 _ 27-1 _ 25 .
4, = Z S0, Ay = Z i Ogj-1,21-1 » Ay = Z f ooy 015 (19a)
=1 =1 =1

By-1 = Z S¥ Bojo1,2-15 By = Z S Baj,ou - (19b)
i=t i=t

Note that for f« 1, 4, = O(f?), 4, = O(f*), B, = O(f*). In particular, if we
keep only terms of first order in f, we obtain u,, = f(QUV)" 2wy, cosn and uy, =
SfVB11 sin g, which is asymptotically equivalent to the usual linear solution (see, e.g.,
eq. [2.17] of Lin et al. 1969).

For realistic amplitudes of the background forcing, fis of order unity so that the
series (18) converges slowly, if at all. In particular, we shall see in § IV that a funda-
mental change in the solutions occurs when f exceeds a certain critical value which
forces the flow to become transonic, i.e., which forces (#,, + u,;) to pass through the
sound speed a. In such cases, the solutions for u,; and u,, lose their even and odd
symmetry in n because a shift in phase is introduced by the production of galactic
shocks.

IV. FULLY NONLINEAR WAVES AND THE INTRODUCTION OF SHOCKS

The dimensionless equations (11) contain three independent parameters—v, x, and
J—which measure, respectively, the intrinsic forcing frequency, the square of the
acoustic speed, and the strength of the background spiral field. Clearly, an exhaustive
numerical search for periodic solutions in all possible regions of this parameter space
would be very time consuming; moreover, the significance of the results of such a
search would not be easily assimilated.

In the rest of this paper we shall use the following procedure. We adopt a specific
model for our own Galaxy—constructed in the manner outlined by Shu, Stachnik,

3 A brief discussion of ultraharmonic and subharmonic resonances for self-sustained stellar
density waves has been given by Contopoulos (1970). Kalnajs (as quoted by Simonson 1970) has
considered ultraharmonic resonances for particles moving in purely circular orbits also from the
standpoint of a series expansion of the perturbed motion.
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and Yost (1971)—whose velocity parameters u,,, U, and V as functions of the galacto-
centric radius = are shown in columns (5), (7), and (8) of table 1. We shall calculate
the streamline solutions at a variety of radii in the model, i.e., along one curve in the
(v, x)-plane, and hope that the conditions spanned will give a representative sample
of the conditions likely to be encountered in other spiral galaxies.

To investigate the transition to transonic flow, we shall calculate the change in the
behavior of the solution for a given streamline, i.e., with fixed » and x, for different
values of the background spiral field strength /. We can visualize this as a development
in time only if we imagine a quasi-static process whereby we increase the value of f
slowly enough that the flow at each value of f reached is described by the steady
equations (11). To begin, we first consider a streamline with an average radius of
10 kpe.

a) Transition to Transonic Flow from Entirely Supersonic Flow

To keep closer to the physics, we shall describe the numerical solutions in terms of
the dimensional variables and the dimensional equations (7). The parameter u,, at
= = 10 kpc has the value 13.0 km s~*. Hence, if we adopt a value 8 km s~! for a,
the flow at very small F must be entirely supersonic. In particular, for infinitesimal
values of F, the results of § IIT show the periodic flow to describe a locus in the
velocity plane which is a perfect ellipse:

K \?2 FoQ 2
v‘z(m) (U — Un)® + (uy — p)* = [m] : (20)

Numerical solutions of equations (7b) and (7c) bear out this qualitative behavior for
small F. (The reader is referred to the Appendix for details on the techniques used to
find the numerical solutions illustrated in this paper.)

For F = 0.5 percent, figure 1 shows a distortion of the ellipse, but no important
qualitative difference emerges. For example, since equation (7a) implies that u, is
proportional to the specific area, o~ 2, the interstellar gas is compressed to the smallest
volume at the location of the potential minimum, n = 0.

For F = 0.90 percent, the second harmonic in the periodic flow makes its presence
felt strongly and introduces two velocity maxima, roughly at » = +90°, in place of
the single velocity maximum at % = 180°. This splitting of the density minimum
occurs because we are just inside the n~! = —3 ultraharmonic resonance at = =
10.7 kpc (see col. [9] of table 1). Such splitting does not occur in the inner regions of
the Galaxy.

Clearly, as F is increased further, the flow must eventually try to cross the sonic
point, u, = a, which is a singular point of equation (7b). Let the critical value of the
field strength at which this first happens be denoted by F,,;;. In the Appendix we show
that the flow for F = F_,;; does not approach the sonic line, #, = a, along a tangent
in the velocity place. Instead the flow develops a cusp there. For this reason we hence-
forth denote F; by Fs,- Mathematically, the cusp arises because the sonic point is a
saddle point of the system of differential equations (7b) and (7c) (Roberts 19695b; see
also Butenin 1965). Physically, the cusp corresponds to a shock of zero strength.

Flow solutions with F > F_,, are shown in figure 2. Each solution passes smoothly
through one sonic point during the expansive part of the flow and forms a shock (for
each period of n) of finite strength during the compressive part of the flow. At the
same time, the location of the density maximum shifts upstream from the location of
the potential minimum. This phase shift in the gaseous density response results in a net
torque being exerted on the gas, the consequence of which is discussed in Roberts and
Shu (1972; see also Kalnajs 1972). For the present we merely note that the shocks
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develop because the spiral gravitational field forces gas moving at supersonic speeds
to slam unknoewingly into gas moving at subsonic speeds.

The crucial role played by a small value of a is illustrated in figure 3. Here the value
of a adopted, 30 km s~1, is typical of stellar dispersive speeds in the solar neighbor-
hood. Clearly, in this case, even the response at F = 5 percent differs little from the
behavior predicted by the linear theory.

The variation of the normalized gas density, o/a,, is plotted in figure 4 as a function
of n for the case a = 8 kms~. (In Roberts 1969, the corresponding figures are
plotted as functions of n/m, whereas in Shu et al. 1972 they are plotted as functions of
¢ = 6 — Q,t.) For F = 5 percent, the value believed to be approximately present in
the solar neighborhood (Yuan 1969), the shocks are quite strong and a factor 12:1
results for the total variation of the gas density. Moreover, the peak density reached is
~5 times larger than the average density, and the zone of high gas compression is
confined to a very narrow spike. This behavior is characteristic for cases in which the

22
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FiG. 5.—Flow in the velocity plane for w = 14 kpc with @ = 8 km s~ For F < Fouep = 3.7%,
the flow is entirely subsonic. For F > Fyysp, the flow is transonic and contains a shock located at
the indicated value of 7.
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basic flow is supersonic, i.e., for u,, > a. The situation when u,, < a is investigated
in the next subsection.

b) Transition to Transonic Flow from Entirely Subsonic Flow

Table 1 shows the parameter u,, to decrease as we go outward from = = 10 kpc.
This happens because equation (8a) shows that u,, must drop to zero as we approach
the corotation radius, 15.3 kpc, where Q = Q,. Thus, from 12.5 kpc to 15.3 kpc,
a > u,, > 0; and the gas flow at small F'is entirely subsonic.

Figure 5 shows the locus described by the flow in the velocity plane for a streamline
with an average radius w = 14 kpc. For F = 2.0 percent, there is only a slight dis-
tortion of the ellipse predicted by the linear theory. A cusp forms for F = F,,,, = 3.7
percent. Note, though, that the cusp develops at the potential maximum, and that it
corresponds to a density minimum. Thus, when F is increased beyond F,,, and
shocks of finite strength are produced, the shocks develop initially at the potential
maximum and then move downstream in the direction of the potential minimum.

Plotted in figure 6 is the corresponding variation of the gas density as a function of 7.
Notice that the peak density is not reached immediately after the shock, but is attained
subsequently by a smooth compression occurring at subsonic speeds. The zone of
high gas compression is fairly broad—indeed, qualitatively, it is not unlike that
produced by an extrapolation of the linear theory.

Clearly, if star formation were controlled essentially by the ambient gas pressure
(which is proporticnal to the gas density in an isothermal model of the interstellar
medium), the optical spiral arms defined by H 11 regions in this part of the Galaxy
would be quite broad. Moreover, since the peak compression achieved is relatively

24 T T T T T T T T T T T

o/o,

-180 -120 -60 o} 60 120 180
7 (deg)

F1G. 6.—The variation of the normalized density, o/oo, as a function of the phase angle n for
the flow at w = 14 kpc with a = 8 km s~ . Note that the solution for F = 3.7%, contains a cusp
at the location of the maximum of the spiral potential, y = + 180°,
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small, the number of H 11 regions would probably be small unless the strength of the
spiral field were rather large (appreciably larger than, say, 7 percent).

We believe that the results of this subsection can be more profitably applied to
explain the broad arms of a galaxy like M33, where u,, is likely to have a small value
throughout the disk (see fig. 6a of Shu et al. 1971). However, we should add the
following qualifying remarks.

The solutions presented in figures 5 and 6 are not easy to find numerically by the
iterative procedure outlined in the Appendix. Numerical integrations with slightly
different starting values were often found to show very different behaviors from the
““correct,” i.e., periodic, solution. This apparent numerical instability may indicate a
breakdown of the asymptotic approximation as we approach the singular point u, = 0
of equation (7c). But it may also indicate that the nonlinear shock solutions found for
u,, < a are actually unstable physically.

Flows with shocks should satisfy the consistency relation that the shock front lie
asymptotically close to an equipotential curve (see § VIb of Roberts 1972 and § IIIf
of Shu et al. 1972). This consistency relation will not generally be satisfied when
u,o < a because the shock location along each streamline turns out to be a sensitive
function of the parameters of the flow—especially of the parameter F. This difficulty
could be removed by an appropriate two-dimensional integration of the steady gas-
dynamical equations in which the location of the shock front is regarded as a free
boundary.

On the other hand, the nonlinear solutions can be shown to be physically unstable
only by including time dependence in the basic equations. Nonlinear time-dependent
flows have been studied by Field and Woodward (private communication). For steady
forcing conditions and u,, > a, they have obtained solutions which are very similar
to those presented in the previous subsection. Of particular interest is their ability to
follow the time-development of galactic shocks from the steepening of finite-amplitude
waves, much as in the classical description by Riemann. As far as we are aware, Field
and Woodward had not studied the case u,, < a at the time of the writing of this

paper.

V. ULTRAHARMONIC RESONANCES AND SECONDARY COMPRESSIONS

From equation (17) the response of the nth harmonic can be expected to be large
whenever we are in the neighborhood of an ultraharmonic resonance where
(uy? — a?)/2UV = n~2. This is borne out by numerical calculations carried out for
the range of radii from 10.0 kpc to 12.5 kpc in our adopted model (see table 1). On
general principles, we can expect ultraharmonic effects to be most prominent in the
neighborhood of 10.7 kpc in our model where (1,,> — a?)/2UV = (—%)2.

Plotted in figures 7a and 7b for a variety of field strengths are the resulting flows for
a streamline with average radius equal to 11 kpc. For F = 0.5 percent, we already
begin to see a significant departure from the linear theory in the development of two
lobes of gas compression. For F = F,,, = 1.1 percent, the ends of these two lobes
drop to touch the sonic line and introduce two cusps placed symmetrically about
either side of the potential minimum. For F > F_,,, the compressive parts of the
flow ahead of each former cusp steepen to give shocks, but these shocks are of unequal
strength. Apparently the formation of the first shock relieves the pressure head for the
second shock.

The variation of the gas density as a function of 5 is plotted in figure 8. We believe
that the second compression of the interstellar gas may generate secondary spiral
features (cf. Roberts 1972) which appear downstream of the main shock (i.e., on the
“outside” of the main spiral arm for Q, < Q). In particular, the secondary com-
pression associated with the n=! = — resonance is found in our model to extend in
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FiG. 8.—The variation of the normalized density, ¢/co, as a function of the phase angle  for
the flow at w = 11 kpc with @ = 8 km s~ *. The secondary compression arises because the response
is affected by the ultraharmonic resonance n~! = —4%.

radius from 10.6 kpc to 11.6 kpc and may well account for the origin of the Carina
feature (see Bok 1971 and references therein). Note especially that the streaming
velocity u, on the inside edge of the secondary density concentration is smaller than
that on the outside edge—just as is the case with the principal arms of a density wave
(cf. Humphreys 1972). If the Carina spiral feature, and its radio counterpart on the
opposite side of the Galaxy, owe their origin to this distinctly nonlinear effect, it
would present a sensitive method to determine empirically an independent value for
the pattern speed of the “grand design.”

Figures 7 and 8 show the secondary shock to disappear when F = 3 percent at
w = 11 kpc. This suggests that the influence of the resonance is suppressed when the
imposed forcing is sufficiently strong. In this connection, for the analysis near ultra-
harmonic resonances, it would be desirable to include the self-gravity of the gas. We
should also not forget that concentrations of interstellar gas with masses characteristic
of “spiral arms” can elicit very substantial responses in the stellar disk (Julian and
Toomre 1966). Thus, the gravitational potential associated with the secondary mass
concentrations (gaseous and stellar) may well help to sustain them at considerably larger
amplitudes than feasible by the simple sinusoidal forcing of the interstellar gas by a linear
stellar density-wave.

In comparison with the n~! = —% resonance, the n=* = —%, —%, ... resonances
produce gaseous concentrations of con51derably smaller radial extents. Thus, the
higher-order ultraharmonic resonances may be capable of generating only relatively
short spurs or feathers, and not major spiral features. Moreover, the “bootstrapping”’
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FiG. 9.—The field strength regime plotted as a function of the galactocentric radius = in our
model of the Galaxy. The left-hand border corresponds to the inner Lindblad resonance; the
right-hand border, to the corotation radius. Solid line gives the value found for F,usp; the dashed
line, the value of F implied by the amplitude relation of Shu when F is normalized to be 5.0%, at
w = 10 kpc. For F < F,yp, the flow is entirely supersonic for = < 12.5 kpc (where u,, = a), and
is entirely subsonic for = > 12.5 kpc. For F > Fyyusp, the flow is transonic and would necessarily
contain shocks. The arrows on the abscissa at w = 10.7 kpc and = = 11.7 kpc mark the radii
where (u,0 — a?)[2UV equals, respectively, (—3)? and (—34)?. The “cascade” which occurs for
F..sp as = approaches the resonance limit, 12.5 kpc, is explained in the text. A numerical grid
taken with 0.1-kpc spacing suffices to resolve only the ranges of the —% and the — % ultraharmonic
resonances.
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mechanism discussed above leads us to speculate that the resultant gas-star structures
—in contrast to the indications of the purely gaseous response calculations—may have
the large angles of inclination typical of real spurs and feathers (cf. fig. 11 of Julian
and Toomre 1966). To be sure, our concentrations of gas are not orbiting at the
circular speed of material clumps (modeled with long-lived mass points by Julian and
Toomre), but the ray method of calculating steady patterns of waves produced by
localized sources (Hunter 1972) suggests that the differences may not be great.

It has not been possible to study the flow for spiral field strengths much in excess of
F = 3 percent at 11 kpc because shock solutions of the type considered in this paper
cannot be found when the field strength exceeds a “cutoff”’ value (see Appendix).
This obstacle arises because the one-dimensional nature of the asymptotic equations
(7) places an overly restrictive condition on the sonic point in certain circumstances.
We believe this difficulty to be an artificial one which may be removed by slightly
relaxing the assumption that the properties of the flow vary only in the n-direction
(perpendicular to spiral equipotentials).

We also note that the consistency requirement for asymptotic solutions containing
galactic shocks mentioned in § IVb is not satisfied by our double-shock solutions. The
locus of the secondary shock front is an especially sensitive function of the resonance
parameter (4,02 — a®))2UV = v? — x, and does not in general coincide with an
equipotential curve » = constant. The above remarks coupled with those made at
the end of § IVb indicate that a two-dimensional integration of the steady gas dynamical
equations would be generally desirable for the outer parts of the galactic disk.

VI. SUMMARY

The main results of our numerical work are summarized in figure 9. In figure 9 we
have plotted as a function of the galactocentric radius, the value of the field strength
F = F,,,, which barely gives rise to transonic flow in the model of our own Galaxy
adopted in table 1.* For values of the field strength above F,y,, the flow solutions
develop shocks. For values of F below F,,, the flow solutions are everywhere smoothly
varying.

The radius 10.7 kpc corresponds to an n~! = —3 resonance; the radius 11.7 kpc,
toann~! = —} resonance; the radius 12.1 kpc, to an n~* = —% resonance;...; and
the radius 12.5 kpc, to the n~* = —1/c0 resonance limit (where u,, = a). The cusped
solutions between 3.1 and 10.5 kpc contain one cusp; those between 10.5 and 11.7 kpe,
two cusps; those between 11.7 and 12.1 kpc, one cusp; etc. This alternation between
single-cusp solutions and double-cusp solutions generates a “cascade” of values of
F.usp Which tend toward zero as we approach the resonance limit at 12.5 kpc. From
12.5 kpc to the corotation radius of 15.3 kpc, the basic flow is subsonic, u,, < a, and
the cusped solution contains a single cusp located at the potential maximum rather
than at the potential minimum.

We have plotted the values of F,.q, as a dashed line from 12.5 to 13.5 kpc because
the “cutoff”” described in the Appendix prevents us from obtaining cusped solutions
for this range of radii. For base subsonic flow, u,, < a, the cutoff corresponds to a
lower limit of F for which we can find periodic solutions that contain a sonic point.
Thus, the cutoff does not prevent us from obtaining solutions which contain shocks
of finite strength at larger F.

Also plotted in figure 9, as a dashed curve, is the field strength implied by the

% The inner Lindblad resonance in our model is at 3.1 kpc; the corotation radius, at 15.3 kpc.
We have not tried to obtain solutions beyond the corotation radius because the physical conditions
there are completely uncertain. However, for given values of f, U, and V, equations (7) show that
solutions with u,, and us, negative are easily generated formally from their counterparts with u,o
and us, positive by effecting the transformation u, — —uy, us — —us, and n — —1.
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F1G. 10.—The character of the cusped solution as a function of the galactocentric radius = in
our model of the Galaxy. Although # local density maxima tend to be produced on the low-
frequency side of the n~* ultraharmonic resonance, only the largest of the local density maxima
develops a cusp. For even #, two cusps form; for odd #, only one.

amplitude relation of Shu (1970)° when F is normalized to be 5 percent at @ = 10 kpc
(Yuan 1969). Clearly if the distribution of the actual wave amplitude in the Galaxy
were given by this curve, the gaseous response would be sufficiently strong to produce
galactic shocks throughout the plotted regime. For reference, we have plotted the

5 See also eq. (6a) of Shu er al. 1971; note, however, that eq. (6b) of Shu ez al. 1971 contains a
misprint: the minus sign should be contained outside the square brackets.
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solutions of largest amplitude at each radius illustrated in this paper as unfilled circles
in figure 9. The corresponding streamline solutions can be found in figures 2, 4, 5, 6,
7b, and 8.

The behavior of the cusped solutions in the velocity plane for various values of = is
illustrated in figure 10.6 We see that n local density maxima tend to be produced on the
low-frequency side of the n~* resonance, but only the largest of these (there may be
two equally large) would eventually form cusps. Thus, per period of 5, we find that at
larger F for n odd, only solutions with one shock are possible; whereas for n even,
we can obtain solutions with two shocks. Note also that for |n| larger than 2, there
exists the possibility of minor compressions both upstream and downstream of the
main shock.

Except for the n~! = —7 ultraharmonic resonance, the additional compressive
regions introduced by the influence of the ultraharmonic resonances may not persist
for realistically large amplitudes of the forcing. Future studies of this point should
include the effects of the “bootstrapping” mechanism which would be operative, as
discussed in § V, in the presence of a responsive stellar disk. We suggest the lower-order
members of the n~! = —%, —%,... resonances to be definite candidates for further
investigation as possible mechanisms for the production of the spurs and feathers
which are often seen in the outer parts of external spiral galaxies. Looking ahead
optimistically, one might even imagine using the ultraharmonic resonances observa-
tionally to study the mechanics of galaxies in a way analogous to the way that spectral
lines are used to study the mechanics of atoms.

VII. DISCUSSION

In this paper, we have demonstrated that galactic shocks develop naturally, indeed
necessarily, if the strength of the spiral gravitational field is larger than a certain
critical value. By following this development numerically, we have ascertained that
periodic shock solutions are simply the highly nonlinear members of a continuous
family of solutions whose counterparts at infinitesimal amplitudes correspond to
linear density waves.

We have also shown that the breadth of the zone of high gas compression is con-
trolled by the relative magnitude of the Doppler-shifted phase-velocity u,, compared
to the effective speed of sound a. When u,, > g, as is likely in the interiors of galaxies
exhibiting large differential rotation like our own Galaxy or M81, the zone of high
gas compression is very narrow. When u,, < a, as is likely in galaxies which rotate
almost uniformly like M33, the zone of high gas compression is broad. Galaxies of the
latter type would also be more prone to the formation of secondary spiral features by
the mechanism of ultraharmonic resonance. In such galaxies, the condition of near-
resonance, (4,2 — a?)/2UV = v? — x ~ (—1)2, would be reached over a much wider
range of radii. These trends can already be discerned from the results of Shu et al.
(1971), but a more detailed discussion would be beyond the scope of the present
paper.

We have not discussed in this paper why the spiral field should actually take on
sufficiently large values to generate galactic shocks in the interstellar gas. Roberts and
Shu (1972) have suggested that wave growth because of some as yet imperfectly

8 The reader may well wonder how the cusped solutions at different radii are transformed
continuously from one topology to another. Mathematically, additional lobes and cusps can be
introduced after the flow forms loops in the velocity plane by passing through the unperturbed
velocity point (#,; = 0, us1 = 0) which is a singular point of the system of differential equations
(7b) and (7¢). Physically, such contortions in the velocity plane, which do not manifest themselves
quite so exotically in configuration space, arise because the character of the response of any
mechanical system changes dramatically in the neighborhood of resonances.
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understood mechanism of instability in the star-gas disk combined with the dissipation
of such a wave by the development of galactic shocks may provide the limitation of
the amplitude of the spiral field to some quasi-stationary value. This suggestion
should be pursued further.

After this work was completed, we learned of an earlier independent study by
Dr. Allan Saaf (1972) of the properties of slightly nonlinear density waves in the
interstellar gas. Dr. Saaf’s analysis is more general than the treatment given in § I1I
since he does not use the approximation of small tilt angles. We wish to thank Dr. Saaf
for sending us a preprint of his work. We also thank Professor C. C. Lin, Professor
G. B. Field, Dr. C. Yuan, and Mr. P. Woodward for some stimulating discussions.
We are grateful to Mr. Joel Bregman for computing assistance in the later stages of
this work, and to the referee for some helpful suggestions for improving its presenta-
tion. The numerical calculations for this paper were performed at the Computing
Center of Stony Brook. This work was supported in part by the National Science
Foundation.

APPENDIX

We describe here the iterative numerical techniques used to find periodic solutions
to equations (11). For entirely supersonic or entirely subsonic flows with given f, we
integrate equations (11) step-by-step starting from » = 0 and ending at n = 180°.
The solution for 0° > n > —180° is obtained from the requirement that u is even in
n and v is odd. The starting value of v is, thus, zero at » = 0. The correct starting
value of u at = 0 must be chosen so that v = 0 atn = +180°. We obtain the correct
value by iteration with the initial guess guided by the analytical results of the perturba-
tion series developed in § I11.

If we increase f to some critical value f.., the solutions not near ultraharmonic
resonances begin to touch the sonic line. This occurs at the location n = 0 for transi-
tions from entirely supersonic flow, i.e., when »? > Xx, and at the location n = + 180°
for transitions from entirely subsonic flow, i.e., when v? < x. For convenience of
discussion, we define the dimensionless acoustic speed

o = x2 = g)QUV)Y2 . (A1)

To be definite, consider the case —v > « (see fig. 1). For f = f,., the most general
solution of equations (11), which preserves the even and odd symmetry of u and v,
and which is continuous in the neighborhood of the sonic point at » = 0, has the
following series expansion:

u=(e+v)+ App| +---, v = ——(1 +£)n—#z‘lnzsign(n)+"-. (A2)

In the above equation, the coefficient A4 is given by

A4 =@®"[-1 + v/e) = fo]?, (A3)

and is real and positive if 0 < fo;y < —(1 + v/). Since the latter condition is found
to be generally satisfied by the critical solution, equation (A2) implies the solution
will generally contain a cusp at n = 0. For this reason, we denote the value of f_.
which leads to a periodic solution by f.sp. To find the numerical value of £, we
use the following procedure.

We make a guess for f.;; and obtain starting values at » = 0* by means of the
series solution (A2). We then integrate equations (11) step-by-step to » = 180°. In

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1973ApJ...183..819S

J; D 1837 7810S]

A,

[mrs

No. 3, 1973 NONLINEAR GASEOUS DENSITY WAVES 839

general the value of » reached at » = 180° will not be zero. We continue to change
feris by iteration untilv = 0 atyp = 180°. The solution for 0° > n > — 180° is obtained
by requiring that u is even in » and v is odd. Similar procedures are easily devised for
the cases —v < « (subsonic flow inside of corotation), v > « (supersonic flow outside
of corotation), and v < « (subsonic flow outside of corotation) (see also n. 4).

Significantly, the value of f,,s, determined in the above manner is found to be the
upper limit of f for which we can find entirely supersonic (or entirely subsonic) flow
solutions, and to be the lower limit of ffor which we can find periodic shock solutions
of the type described in § IV. This illustrates that the natural transition to transonic
flow for f > f..;; cannot remain everywhere smooth by containing two symmetrically
placed sonic points analogous to the hypothetical flows found for some periodic
nozzles. Rather, the flow must develop shocks.

The procedure for finding the asymmetric single-shock solutions presented in § IV
has been described, in the case of base supersonic flow, by Roberts (19696) and in
Appendix C of Shu ef al. (1972). This procedure is trivially generalized to apply to
the case of base subsonic flow.

In the neighborhood of ultraharmonic resonances corresponding to even values of
n, two cusps can develop when f'is increased to some critical value f,,, (see fig. 7a).
This trend can be followed from the formation of two lobes when the entirely super-
sonic solutions are pushed to values of f slightly less than f,s,. The two cusps are
symmetrically located at » = +m,.. Our problem reduces to finding f.,s, and n, > 0
which are not known a priori. We use the following procedure.

The series solution of equations (11) valid in the neighborhood of » = . can be
found as (for —v > «)

u=(°‘+”)+ACI77—770|+"'9

U = fousp SIN 7, — (A + vje)n = ne) +-- -, (A4)
where the coefficient A4, is given by
Ae = DY [—(1 + v/a) — fousp COS N2 (A5)

We guess values for f,u, and 7, and obtain starting values of v and v at » = »,* and
at n = n.~ by means of the series solution (A4). We integrate forward from n = »,*
to n = 180° and integrate backward from » = 7.~ to n = 0. We then check to see if
v is zero both at n = 0 and at n = 180°. If not, we keep changing the guesses for f,sp
and 7, until v is zero at » = 0 and at y = 180°. An efficient iterative procedure for
doing this is based on a two-dimensional analogue of Newton’s method for finding
roots. Finally, the flow for 0° > » > —180° is again obtained by imposing the even
and odd symmetry of v and v.

If fis increased above f,,,, in the above case, two shocks will generally develop.
The double-shock solutions are found by the following procedure. There are two
sonic points n = nuep and n = npep, through which the flow passes smoothly by
expanding from subsonic velocities to supersonic velocities. The series solution in the
neighborhood of a sonic point 7gp has the appearance

u=(°‘+V)+ASP(77_7YSP)+"',

v=fsinnge — (1 +v/a)(n — ngp) + -+, (A6)
where the coefficient Agp is given by
Asp = B)?[—(1 + v/e) — fcos nsp]2. (AT)
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FiG. 11.—The procedure used to obtain a double-shock solution. The example shown corre-
sponds to w = 11 kpc, a = 8 kms~%, and F = 1.5%,. Explanation for the various labels is given
in the Appendix.

For given f > f.,sp, We guess values for 7 sp and npgp. For each value of 7gp, we
integrate forward in » to find the (4 or B) supersonic branch of the flow, and backward
in 7 to find the (4 or B) subsonic branch (see fig. 11). For each point n on the 4 and B
supersonic branches, we simultaneously compute the jump which would result were
the flow to shock at that point. If we denote the flow immediately upstream of the
shock by “1”’ and immediately downstream by ““2,”” we have the jump conditions for
an isothermal shock:

[—v + u(2)] = ?/[—v + u(1)], v(2) = v(1). (A8)

The intersection B2 in the velocity plane of the hypothetical 4 shock-branch with
the B subsonic-branch gives a possible shock. Similarly, the intersection A2 of the
hypothetical B shock-branch with the A subsonic-branch gives another possible shock.
However, these shocks will not arise unless the flows refer to the same point in y-space.
Thus, we require

7(Bl) — 7(42) =0 and  5(41) — 5(B2) = 360° (A9)

at the two shocks. Conditions (A9) will generally not be satisfied unless n,5p and ypgp
are chosen properly. For given f > f.., the correct choice of n,sp and 7pgp can
again be found by an iterative procedure based on a two-dimensional analogue of
Newton’s method for finding roots. Four-place accuracy is easily achieved.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1973ApJ...183..819S

J: - -183C-819S!

A,

[mrs

No. 3, 1973 NONLINEAR GASEOUS DENSITY WAVES 841

In summary, we remark that our experience shows each of the solutions described
above is uniquely specified by (v, x, f). The only problem which can arise is the
possibility that for given f'we can find no location of the sonic point ngp which produces
a periodic solution containing shocks. This can occur because the assumption that
the flow varies only in the »-direction places a condition (i.e., eq. [A6]) on the sonic
point analogous to the requirement of a ‘“throat” in nozzle flow. The coefficient Agp
in equation (A7) is real only if the field strength f and the location 7gp of the sonic
point are restricted to values which satisfy the inequality

—1 + |v|/e — fcosngp > 0. (A10)

As a general rule, the location of the sonic point is such that cos (ygp) > 0 for
[v| > «, and cos (ygp) < O for |v] < «. Thus, cutoff on the possible values of f can
occur either as an upper limit if |v] > «, or as a lower limit if |v| < «. These facts
can be stated quantitatively by noting that inequality (A10) implies that

S < (|v|/e — 1)/cos ngp if cosngp > 0,
and that

f> (1 = |v|/e)|cos ngp| if cosngp < 0.
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