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ABSTRACT

Quasi-steady flows of interstellar gas in a spiral gravitational field are followed for the purpose of in-
vestigating galactic shocks and the resultant processes of the formation of stars and interstellar clouds.
We model the interstellar medium with two stable phases in which thermal balance is maintained through
heating by low-energy cosmic rays. The problem, including transitions hetween the two phases, is given a
general formulation but is solved in an approximation which ignores the difference in fluid velocities of the
two phases. We also assume that the cosmic-ray flux is uniform in circles about the center of the Galaxy
and that the relative abundances of the chemical elements are “normal.”

For a spiral gravitational field with strength equal to 5 percent that of the axisymmetric field at 10 kpc
from the galactic center, the density ratio at maximum and minimum compressions is 9:1 for the inter-

: cloud medium while it is 40: 1 for the gas in a typical cloud. During the decompression phase of the flow,

a small percentage of the mass of the clouds evaporates to become intercloud material, but this small
amount is recovered in the shock. As a by-product of phase transitions, the properties of the clouds in the
regions between spiral arms are such as to make their detection in 21-cm absorption very difficult.

In the absence of the cloud phase, we determine the thickness of the shock layer in the intercloud
medium to be typically 50 pc. An interstellar cloud immersed as a test particle in the intercloud medium
experiences a dynamic rather than a quasi-static compression as it passes through the shock layer. The
critical mass for the gravitational collapse of a cloud is reduced by a large factor because of the compres-
sion in the shock.

I. INTRODUCTION

The problems discussed in this paper are motivated by the desire to understand the
detailed mechanisms which trigger the formation of stars in normal spiral galaxies.
Central to our discussion are two fundamental ideas: (i) spiral galactic shocks and (ii)
the two-phase model of the interstellar medium. Within this context, we concentrate on
the roles played by gravitational and thermal mechanisms. We avoid the vexing problem
of the magnetic-field geometry by ignoring at the very outset the effects of the inter-
stellar magnetic field. We do this not because we feel these effects to be unimportant,
but because we wish to keep the present discussion as simple as possible.

a) Basic Concepts

On a small scale the main obstacle to star formation is that most of the interstellar
clouds would not be even remotely bound by their self-gravitation if the clouds were
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isolated entities placed in a vacuum. This obstacle is largely removed by recent calculations
which show that the nearly neutral component of the interstellar medium may consist
of two gaseous phases in rough pressure equilibrium with one another (Zel’dovich and
Pikel’ner 1969; Field, Goldsmith, and Habing 1969; Spitzer and Scott 1969; Silk and
Werner 1969; Hjellming, Gordon, and Gordon 1969; Bottcher et al. 1970; Habing and
Goldsmith 1971). These two phases are identified with the observed (dense) clouds at
temperatures 20°-200° K and with an unobserved (rarefied) intercloud medium at
temperatures ~104° K.

On a galactic scale, the problem of star formation presents the following puzzle. Why
do the regions of star formation, as marked out by the giant H 11 regions in certain
external galaxies, often appear to be lined up as “beads on a string” along two diametri-
cally opposed spiral arms? A natural answer in the context of the density-wave theory
of spiral structure is given by Roberts (1969; see also Fujimoto 1966, and Roberts and
Yuan 1970). Roberts considers the nonlinear response of the interstellar gas to a spiral
gravitational field of the type discussed by Lin, Yuan, and Shu (1969) and finds that
shocks can develop. The large compression of interstellar gas behind the shocks is
imagined to trigger the nearly simultaneous gravitational collapse of massive clouds
along extensive fronts.

However, the previous discussions are incomplete, for the ‘“effective pressure” in the
gas is identified as resulting from the random motions of the interstellar clouds. For the
large-scale dynamics, random motion can act as a ‘“‘pressure’ in that it provides support
against the gravity field of the Galaxy (see § I1I); however, there are severe difficulties
in visualizing how this “effective pressure” is transmitted on a small scale to trigger the
gravitational collapse of clouds since cloud-cloud collisions provide compression essen-
tially only in one direction (cf. Stone 1970). '

The above difficulty is avoided if we adopt the two-phase model of the interstellar
medium. In this picture, the galactic shocks are initiated by the intercloud medium; the
“effective pressure” is simply the gas kinetic pressure of this medium; and the dissipation
mechanisms by which the macroscopic energy of bulk motion is transformed to micro-
scopic energy are the usual ones of viscosity, heat conduction, and radiation. In the
shock layer the clouds are initially decelerated by the drag exerted by the intercloud
medium and suffer further deceleration because cloud-cloud collisions serve as an
effective means of (diffusive) momentum transport in regions where the gradient of the
bulk velocity is large. Otherwise the clouds are viewed simply as embedded bodies
which expand or contract to adjust to changes of the ambient pressure.

b) Procedure

The purpose of the present paper is to develop the theory for the description of the
processes described above. In particular, we shall show that such a theory allows the
inclusion of transitions between the two phases in a straightforward manner. This
development is essential if we wish to understand the process by which interstellar
clouds may be formed out of the intercloud medium.

Our investigation proceeds along the following line of attack. In § 1I we review
briefly the basic features of the equilibrium model of an interstellar medium which
contains two thermally stable phases heated by low-energy cosmic rays. Consideration
of the various timescales shows that the equilibrium calculations are applicable locally
to dynamical calculations everywhere except in a thin region—the shock layer—where
the gas may briefly be carried far from an equilibrium state.

In § IIT and the Appendices we formulate the basic equations which govern the
galactic flow. In particular, we explicitly give the form taken by the equations when
phase transitions occur by the mechanism of thermal instability. In this section we treat
galactic shocks as discontinuities in the flow for which appropriate jump conditions
must be satisfied.
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In § IV we solve these equations numerically in an approximation which ignores the
difference in fluid velocities of the two phases. The most noteworthy result of this section
is the conclusion that the probable state of the clouds in the regions between spiral arms
is such as to make the clouds extremely difficult to detect in 21-cm absorption.

In § V we examine the internal structure of the shock layer in the intercloud medium.
We do not consider here, as we do in § IV, the interactions with the cloud phase because
the detailed knowledge of the relevant relaxation processes are not available at the
present time. (For the calculations of § IV we need to know only that these processes
exist and are rapid.) We do, however, make some preliminary comments on the behavior
of the clouds in the shock layer when the clouds are treated as test particles.

In § VI we consider the gravitational stability of self-gravitating clouds which are
bounded by external pressure. Clouds whose internal temperatures are maintained by
external sources of heating have considerably greater compressibility than isothermal
spheres, and we find the gravitational collapse of such clouds much easier to trigger by
a sudden compression than has been previously estimated.

II. TWO-PHASE MODEL OF THE INTERSTELLAR MEDIUM

Because the H 1 gas of the interstellar medium is usually very rarefied, the excitation
and ionization of atoms can occur either collisionally (via inelastic collisions with
thermal particles or with energetic particles) or radiatively (via the absorption of star-
light or of energetic photons) whereas de-excitation and recombination can occur only
radiatively (via the spontaneous emission of a photon). The usual assumption of local
statistical equilibrium for the population levels requires upward and downward transitions
to be balanced in a fashion which is consistent with the local conditions of density and
temperature.

The microscopic condition of equilibrium described above is not sufficient to guarantee
a steady macroscopic state. I particular, if there is no external source to heat the gas, it
will cool radiatively to very low temperatures in a time which is long compared with the
microscopic relaxation times but short compared with the large-scale dynamical times
encountered in the Galaxy (see § I1d). We shall follow Field ef al. (1969) and Spitzer and
Scott (1969) in assuming the interstellar H 1 gas to be heated and kept partially ionized
by a static flux of low-energy cosmic-ray protons. For simplicity, we shall assume the
flux to be uniform, both inside and outside spiral arms. The latter assumption should
be relaxed if the sources of heating and ionization should turn out, in fact, to be as-
sociated with extreme Population I objects.

As is evident from the number of papers in the literature dealing with this subject,
great uncertainties are involved in estimating the flux of low-energy cosmic rays actually
present in the general interstellar medium. Hence, it is safest perhaps to view the flux
level to represent the mean input of heat by all sources of energetic particles and photons.
Regarded in this spirit the flux level is a free parameter to be adjusted, within limits, to
give a best fit for the observations. Fortunately, simple scaling laws exist to convert all
of our computed results if the flux level is different from the adopted one.

a) Egquilibrium Calculations

We assume that the input of heat is not so sporadic in time and in space that no
meaning can be attached, even locally, to calculations of the equilibrium macroscopic
state (cf. Bottcher et al. 1970). A steady state results per unit volume when the total
heat gain T is balanced by the total radiative loss A, and when the total ionization rate
I is balanced by the total recombination rate R (Eddington 1926).

Because the medium is assumed to be optically thin with respect to the cooling
radiation, the equilibrium calculations can be represented, for given chemical composi-
tion, in terms of the variables (n, %., T, {). The notation used here is the usual one
where % is the number density of all atoms, neutral and ionized, #,. is the number density
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of free electrons; T is the kinetic temperature (assumed to be the same for all species
of thermal particles); and ¢ is the statistical rate of ionization of a single hydrogen atom
by the primary flux of low-energy cosmic rays. Thus, the two steady-state conditions on
heat and ionization balance can be written as the functional relations

I‘—A=3€(n,ne,T,§') =Oa (la')
I—R=9(n,n,T,{) =0. (1b)

In equations (1a) and (1b) we have suppressed explicit display of the dependences on
the relative chemical abundances. The net heat gain per unit volume 3C is often written
as —pL, where £ is the heat-loss function per unit mass, and p is the mass density given
b
Y p= mn. (2)

In the above m is the mean atomic mass computed as if all the atoms were in their un-
tonized states and is equal to 2.16 X 10~24 g if the medium contains 10 percent helium by
number.

The simultaneous solution of equations (1a) and (1b) allows us to express the pressure
P = (n + n)kT as a function P, of (p, {):

P = PGQ(p) f) . (3)

Plotted in figure 1 are the results of the steady-state calculation when ¢ is taken to be
1.2 X 1071% 571 and the relative chemical abundances are taken to be “normal.”! The
value ¢ = 1.2 X 10-15 571 is chosen to yield a density of free electrons in the intercloud
medium which is in rough agreement with the density implied by pulsar dispersion
measures (cf. Hjellming et al. 1969).

The high-density, low-temperature phase (clouds) can exist in pressure equilibrium
with the low-density, high-temperature phase (intercloud gas) if P = (n + n.)kT falls
between Ppuax and Pnin. (Note from fig. 1 that log[Pmax/k] = 3.18 and log[Pmin/k] =
2.48.) The middle phase is one of unstable equilibrium. A bubble of gas placed artificially
in this regime will tend to evolve toward one of the thermally stable phases on a time
scale of a few million years (Goldsmith 1970). If the bubble is sufficiently small that
pressure equilibrium with the ambient medium is easily established but not so small that
thermal conductivity is important, the mode of thermal instability is isobaric (Field
1965).

b) Transitions between the Two Stable Phases

It is obvious that if one tries to increase the pressure above Pyax, some of the inter-
cloud material will condense to become cloud material, whereas if one tries to decrease
the pressure below Pp,in, some of the cloud gas will evaporate to become intercloud gas.
This process can only be loosely termed a thermal instability inasmuch as the medium
is driven to a condition of runaway thermal imbalance by the disappearance of one of
the stable equilibrium states. The phase transition in this case needs not go to completion
because the transformation of some of the material into the other phase may relieve the
pressure discrepancy for the remaining material.

! Apart from some minor exceptions, figure 1 is computed with the radiative loss functions used by
Goldsmith, Habing, and Field (1969) and with the heating and ionization formulae given by Spitzer and
Scott (1969). The differences are that we have followed Penston (1970) in using Peterson and Strom’s
(1969) rate coefficient for the collisional excitation of hydrogen (leading to the subsequent emission of
Le) and in including the cooling line A5201 of N 1. We have also adopted a number abundance of Fe
relative to H of 3 X 1075, Each of these revisions increases the cooling efficiency of the intercloud medium
relative to that used by Goldsmith ef al. and largely accounts for the increase in a factor 3 in ¢ which we
find necessary to give essentially the same fit to observations.We have also included the process of col-
lisional ionization of atomic hydrogen by electron impact. This process competes with cosmic-ray ioniza-
tion at high temperatures and is thus not negligible in galactic shock layers.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972ApJ...173..557S

J: I oI73C5575!

A,

[mr2

No. 3, 1972 GALACTIC SHOCKS 561

3.4 24.3°K —=/ —

33— 7,470°K
3.2
30—
30
2.9
2.8
2.7
2.6
25

8,890°K—=

log (P/k)

405°K—=
4
259°K

ne (cm™)

I | I | | 1 I l
-20 -15 -10 -05 0.0 0.5 1.0 1.5 2.0

log (n)

Fic. 1.—Equilibrium properties of interstellar gas heated by a uniform flux of low-energy cosmic-ray
protons.

The above mechanism is one of volume radiation and is therefore a rapid transition if
it occurs. Zel’dovich and Pikel’ner (1969) and Penston and Brown (1970) have also
considered surface effects due to heat conduction at a cloud-intercloud interface. These
considerations reveal a remarkable similarity between this gas and a van der Waals gas
in the existence of an integral criterion similar to Maxwell’s construction for the deter-
mination of the “vapor (or saturation) pressure” P,. Phase transitions which arise at
the interface when P # P, are, however, exceedingly slow if one adopts atomic transport
coefficients; and we shall ignore this effect in a first treatment. Inside shock layers,
however, the dynamical effects to be discussed in § Vd may greatly enhance the effective
transport coefficients and may lead to an ability for the preexisting clouds to act as-
“nucleation centers” for the transformation of intercloud material into cloud material.

¢) Scaling Law for the Equilibrium Calculation

If we ignore plasma processes, then all the atomic processes which enter in the calcula-
tion of the quantities 3¢ and 9 are two-body processes. Indeed, an examination of the
individual terms adopted in 3C and g shows that they are all proportional to #?, n#n,., n.?,
{n, or ¢n. multiplied by some rate coefficient (and relative abundance) which depends
only on T and possibly on the ratio n./zn. Hence, as has been implicitly recognized by
Field et al. (1969), the functions 3C and 9 have the equidimensional property

:}C(xn7 )\ne’ T’ xg‘) = A23(‘)’(’1” ne? T’ g‘) ) (4a’)
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I(\n, An., T, A) = )‘29("; ne, T, §) , (4b)

where A is any real positive number. Thus, from the solution for 3¢ = 9 = 0 given in
figure 1 for ¢ = 1.2 X 10-15 5!, we may obtain solutions for any other value of { merely
by scaling # and %, and leaving T unchanged. In particular, the equilibrium pressure
has the linear scaling property

Peq(Ap, N) = MPeq(p, §) - (5)

We shall make frequent use of these exact scaling relations throughout this paper.
We also note from figure 1 that the two stable phases have P-p relations which are
fairly well represented by the polytropic relation

Peq(p; §) = K(§)p™ N, (6)

where K(¢) « YV is a constant for given {. Table 1 shows that except for P very close
to Pmax, the single value N = —4.0 suffices to give a very good fit for the intercloud
phase and is used in § IV and in Appendix C to simplify calculations. In contrast, a
constant value for V suffices for the cloud phase only if we restrict ourselves to density
ranges of a factor ~5 for P near Ppia and of a factor ~10 for P near Ppnqx. This proves
sufficient to serve as a useful device for the calculation of the structure of self-gravitating
clouds in § VI.

d) Applicability of the Equilibrium Calculations for Dynamics

The applicability of the equilibrium relations locally for dynamical calculations
hinges on an examination of the various timescales. We list in table 2 some of the time-
scales relevant to our calculations.

In both the intercloud and cloud phases there exists a hierarchy of timescales: fgyn >
trecomb > Leool > Latomic col1. Furthermore, the relaxation time for a particular process in
the intercloud medium is always much longer than the corresponding time in the cloud
gas. The existence of such a hierarchy of timescales results in a great simplification for
the development which is to follow.? Thus, except in a shock layer, the variations in
pressure generally occur so slowly in the intercloud medium that the gas can easily
adjust its local thermal properties to correspond to the equilibrium state. Moreover,

TABLE 1

PoLYTROPIC INDICES BASED ON THE INSTANTANEOUS SLOPE OF
THE EQUILIBRIUM PRESSURE-DENSITY RELATION

INTERCLOUD PHASE Croup PHASE
P/k n {[(3 log Peq)/ n {{(9 log Peq)/
(cm™3° K) (cm™3) (0 log p)lp—1}72 (cm™3) (0 log p)y—1}72
300........ 0.0170 —3.78 1.20 —1.03
450........ 0.0292 —4.04 7.22 —1.75
600........ 0.0432 —4.14 12.8 —2.30
900........ 0.0740 —3.96 24.7 —2.96
1200........ 0.111 —3.22 37.7 —3.37
1500........ 0.164 —1.33 51.4 —3.66
5000........ 247 . —5.00

2 Qur discussion is physical, but it can be made rigorous by the introduction of the formal apparatus
of “two-timing”’—or, since we deal with steady flows, by the introduction of “multiple length scales.”
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TABLE 2
TyprcAL TIMESCALES IN THE Two-PHASE COMPONENT MODEL OF THE INTERSTELLAR MEDIUM
Dynamic Thermal
Propagation of forced pressure distur- Recombination and cooling (years)*:
bances of galactic scale in the inter- Intercloud...................... 105-107
cloud medium (years).............. ~108 Cloud.......................... 104105
Sound travel time through clouds (years) ~107 | Atomic collisions (years)f:
Cloud-cloud collisions (years).......... ~107 Intercloud...................... 102-103
Cloud........... ..o 101-102

* Recombination times are generally somewhat longer than cooling times.

T The times required for the collisional excitation of neutral atoms and of ions by impacts with ther-
mal electrons and with neutral hydrogen atoms are generally somewhat longer than the typical mean
free-flight time for elastic collisions.

(tdyn)intercloud > (tsound)cloud’\’tcloud-cloud coll SO that the clouds can remain il’l I'Ollgh
pressure equilibrium with the surrounding intercloud medium. On the other hand,
Leloud-cloud col1 3> (feool)eloud SO that the clouds can be heated only transiently by cloud-
cloud collisions (cf. Stone 1970). When large gradients are present to throw the gases
temporarily out of equilibrium, relaxation back to equilibrium is much slower for the
macroscopic thermal state than for the microscopic degrees of freedom.

III. BASIC EQUATIONS

Two-phase flows have been studied extensively in connection, for example, with
foams, aerosols, emulsions, and blood. A rigorous derivation of the fluid equations of
such systems has recently been given by Drew (1971). Our treatment below and in
Appendix A follows a more physical approach.

We begin with a description of the average properties of the clouds which is similar
locally to a model of “standard clouds” (cf. Spitzer 1968). We assume that self-gravita-
tion plays only a small role in binding most of the clouds. The density p, inside the
clouds will generally vary from cloud to cloud because of cloud-cloud collisions (among
other things), but we assume that the mean value (p.), obtained by averaging over the
local distribution of clouds, is determined by the condition of pressure equilibrium:

PeQ(<Pc>: ) =P, (7)

where P is the pressure of the ambient intercloud medium.
Let F, denote the local fraction of volume occupied by the clouds; #,, the number of
clouds per unit volume; and (M), the average mass of the clouds. Clearly, there exists

the relation
Fipe) = niM) . (8)

For convenience, we further adopt a model of spherical clouds and define the average
cloud radius (R;) through?

4% (pcY(R:y*=(M), or equivalently, F,= n, %ir'(Rc)?' . 9)

We adopt a fluid description for the motions of the clouds in the Galaxy. We allow
the possibility for transitions between the cloud and intercloud phases, but we assume

3 The definition (9) can be justified only on the basis of convenience since there is no cogent reason why
most of the clouds need be spherical if they are held together only by external pressure.
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the net sink of gas due to star formation to be negligibly small. Let (M) and (Mv’) be
the average time rates of change of the mass and momentum of a cloud due to phase
transitions; u., the mean velocity of the clouds; u, the fluid velocity of the intercloud
gas; ¢, the clouds’ rms velocity dispersion in any direction; and U, the gravitational
potential of the Galaxy. The equations for mass and momentum transfer of the clouds
are then given in an inertial frame of reference by

> (Bdo) + V- (Flphu) = nd), (10a)

’(% (Fc<Pc>uc) + V'(Fc<Pc>ucuc) = _Fc<Pc>W - V(F0<Pc>52)
— FVP — D(u, — u) + n{Mv’). (10b)

For a derivation of these equations from a kinetic description of the clouds, see Appendix
A. :
The coefficient D associated with the drag force between the two phases is given by

D = §CR.(1 — F.)p '—"<—1§>—“'— (11)

where the dimensionless drag coefficient C can be estimated to be about unity for flows
at Mach numbers above 0.5 (cf. Chernyi 1961). In what follows we regard ¢, (M), c,
and U to be known. (In the usual model of standard clouds, (M) = 400 M, ¢ = 8 km
s~L.) We further assume that the change of momentum due to phase transitions involves
mass moving at velocity u, if cloud material is being transformed into intercloud material
and at velocity u if intercloud material is being transformed into cloud material (see
Appendix C). Thus,

nlMv'y = n(Mu, if n{M)<O0,
=n(Mu if n{M)>0. (12)
The fluid equations for the intercloud medium are easily written down as
9
ot
21~ Fopul + v-I(1 = FJpuu] = —(1 = F)pv0 — (1 = F)VP
— D(u — u,) — n{MV'). (13b)

[(1 - Fc)P] + V'[(l - Fc)Pu] = —m,(M) ’ (133)

In equation (13b) we have ignored the turbulent contribution to the momentum transfer
in the intercloud medium. Furthermore, under the conditions of local thermal equilib-
rium, the energy equation, the equation of charge balance, and the equation of state
for the intercloud gas may be replaced by the P-p relation

P = Pey(p, §) - (14)

Equations (7), (10), (13), and (14) cannot be used in galactic shock layers where
departures from local thermal equilibrium exist in conjunction with steep gradients of
density, velocity, pressure, and temperature. On a galactic scale, we treat such layers
as discontinuities in the flow which may be incorporated by placing appropriate jump
conditions on the fluid equations (see § IIlc).

For the present we note that equations (7)-(14) do not form a closed set even if ¢,
(M), ¢, and U are assumed to be known. To close the set of equations, we need to specify
n{M) in terms of the existing variables. Fortunately, as we shall see in the next sub-
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section, we are able to determine #,(M) for the large-scale problem without being
required to make a detailed rate calculation of the physical processes which are involved.
The reason is that the phase transitions of interest are those discussed in § II5, and the
occurrence of these transitions is dominated by the conditions of the large-scale flow,
rather than the reverse.

a) Form of the Equations with and without Phase Transitions

In a smoothly varying galactic flow involving the two stable phases described in § II,
appreciable phase transition will occur only if the pressure in the intercloud medium
tries to exceed Pmax or to fall below Ppin. On the other hand, the thermal instability
which sets in at this point occurs so quickly and is so efficient that it virtually supplies
the excess or deficit in pressure required by the flow instantaneously by adjusting the
ratio of cloud/intercloud gas. Hence, as long as the instability is operative and as long
as the flow remains smooth (i.e., does not develop shocks), the pressure is regulated to

have the value

where P, is Prmax OF Prin as the case may be. Conversely, as soon as the flow can reverse
the trend of the change of pressure which brought on the phase transition, the insta-
bility ceases and phase transition is terminated. Of course, if the driving of the thermal
instability by the flow is of sufficient duration, phase transition may go to completion
and the pressure restriction (15) no longer apphes

In summary, either n{M) =0 or n (M) # 0. If n (M) = 0, the set of equations
(7)-(14) is closed. If #, (M) 5 0, the additional relation (15) closes the set.

b) Reduction to Two Dimensions

Because the interstellar gas is distributed in a very thin layer in the Galaxy, it is
obviously advantageous to integrate the dynamical equations in the vertical direction.
Such an integration removes terms involving differentiation with respect to z which
would otherwise formally constitute the largest terms in the equations. It would be
wrong, however, to infer that the three-dimensional nature of the distribution is in-
trinsically ummportant For a given amount of matter, the mixture ratio of the two
stable phases at a given pressure depends on the volume to which the system is confined.
The most important direction of confinement is the vertical direction—a fact explicitly
recognized by Field et al. (1969). In the present paper we are primarily interested in
the physical consequences of periodic compressions and decompressions in the directions
parallel to the galactic plane due to the presence of a spiral gravitational field. Since our
qualitative conclusions will not depend sensitively on the exact details of the vertical
distribution, we adopt in Appendix B the simplest self-consistent model for the vertical
structure.

In the model considered in Appendix B, the z-dependence of F(p.) is given by the
Gaussian exp (—mz2/h.2) whereas the z- dependences of p, {p.), and P are given by the
Gaussian exp (—wz%/h?). The quantities 4. and % are the “effective thicknesses” of the
distributions of the two phases; their squares are given in terms of various quantities
evaluated in the central plane of the Galaxy z = 0:

2mwc? 2P/ p
#0/0d)., T a*o/az2>z=' (16)

To be definite, we also assume that the gravitational potential U corresponds to

that of the den51ty-wave theory of spiral structure and is (nearly) steady in a frame
which rotates with angular velocity , about the z-axis. We look for flows which are
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steady in this frame.? If the integrations of the fluid equations over z are now carried
out asymptotically for small 4. and % (see Appendix B), the two-dimensional fluid equa-

tions now read )
V- (Flpdhett) = nshl M), (17a)
V-[(1 = F)phu)l = —n.hlM), (17b)
Ve (Fpoyhottste) = Fo(po)h—V (0 — 3Q%7%) — 2Q, X u
— V(Fpo)hec?) — FN(Ph) — Dh(u, — u) + nh{Mv'y, (17c)
V-[(1 = Fo)phuu] = (1 — Fo)ph[—V(V — 3Q%%) — 2Q, X u]
— (1 — F)V(Ph) — Dh(u — u,) — nh{Mv'y. (17d)

All the symbols, except for 4, and k, in equations (17) and in the equations which
follow refer to their values in the plane z = 0.

¢) Jump Conditions

On a galactic scale shocks are treated as discontinuities in the flow, and the equations
(17) are to be supplemented by jump conditions if shocks are to be included. Actually,
of course, the thickness of a shock layer in the direction s normal to the shock front is
characterized by one (or more) small length scale, say so (see § V). Inside the shock
layer the flow variables may be divided into two classes: those which are O(1) and those
which are O(sq~!). Terms of the second type are #,{(M), the normal component of the
drag Dh(#,. — u.), and the normal derivatives of F,, {(p.), p, P, #,1, and u., where
#.. and #. are the components of velocity perpendicular to the shock front. The normal
derivatives of the components .| and #| parallel to the shock front are smoothly
varying and are typical of terms of the first type.

Thus, the jump conditions to be imposed on equations (17) are obtained by inte-
grating the equations across the shock layer in the direction normal to the front and
taking the limit so— 0. After a little manipulation, we obtain

[Fepe)htcthos]s? = Am (18a)

{(1 = Fo)phu,]? = —An, (18b)
[Felpeyhe(shes® + &%) + FePhI? = A, , (18¢)
(1 = F)h(ow? + P2 = —8,. (18d)

In the above the indices 1 and 2 denote positions in the Galaxy immediately upstream
and immediately downstream from the shock. The quantities

= f nsho{ M)ds , (19a)

8= [n AMv.y — Dh(ue — w) + Ph 2L ] ds | (19b)

¢ Field (private communication) has pointed out that galactic shocks are, strictly speaking, incom-
patible with Bernoulli’s theorem for steady barotropic flow. If we adopt, however, the view of Lin and
Shu (1964, 1966, 1972) and consider spiral structure to be intrinsically a quasi-stationary phenomenon,
we avoid such difficulties by requiring only that the flow be quasi-steady. Our formal solutions are, then,
properly regarded as being valid for times shorter than the characteristic time of evolution of the under-
lying spiral structure.
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represent, respectively, the interchange of mass (between the two phases) due to phase
transitions; and the interchange of momentum due to phase transitions, due to drag,
and due to a difference in compressibility of the two phases.

By definition, the shock layer is that region of space where the system relaxes to
local equilibrium conditions after it has been thrown out of a different equilibrium
upstream. Thus, we require that the relation between P and p (and (p.)) immediately be-
fore and immediately after the shock correspond to the equilibrium conditions

P = Pey(p, §) = Peqpe), §) at  “1”? and “2.” (20)

When phase transition is present inside the shock layer, there is an additional re-
quirement on the flow. Because a shock is always compressional, i.e., P(2) > P(1), any
phase transition involved will be in the sense that intercloud material is being converted
into cloud material. This phase transition is forced on the flow because the compression in
the absence of phase transition would imply downstream pressures P(2) greater than Piax.
On the other hand, it is unlikely that phase transition would continue once the pressure
drops significantly below Pra.x. Therefore, in a shock which involves phase transition, we
requige that the downstream pressure P(2) be close to (but perhaps slightly less than) Pax
(see Appendix C):

P(2) >~ Py (21)

Given the upstream values and the knowledge that phase transition is absent in the
shock layer (A, = 0), equations (18) and (20) underspecify the downstream values of
F., {pc), p, tes, %1, and P because we do not generally know the value of A,. Similarly,
equations (18), (20), and (21) underspecify the downstream conditions also by one
degree of freedom. We shall now see that the one degree of freedom is removed by the
steady-state requirements of the large-scale flow.

d) Self-Regulation of the Average Pressure in a Steady State

If we assume that the flow is (nearly) steady and that the streamlines are (nearly)
closed, the values of A,, and A, are specified by the requirement that there can be no net
transfer of either mass or momentum between the two phases in a complete circuit
around the Galaxy. Thus, the relaxation process inside the shock from “1” to “2” is
required to produce amounts of mass transfer and momentum transfer which are
exactly opposite those produced in the rest of the flow going the “long way’’ around the
Galaxy from “2” to “1”,

For a given spiral gravitational field, the specification of both A,, and A, is not general-
ly consistent with arbitrary “average” conditions in the Galaxy since there is only one
degree of freedom associated with the jump conditions of § IIIc. For example, if the
average pressure along a closed streamline is too high, we would expect to find that
there is more conversion of intercloud material into cloud material in the shock than
there is transformation of cloud material into intercloud material in the rest of the flow.
This would, of course, result in a lowering of the average pressure because the material
occupies less volume in the cloud form than in the intercloud form. Conversely, if the
average pressure is too low, the net transformation of cloud material into intercloud
material would tend to raise the average pressure. The requirement that there be no net
momentum transfer between the two phases is, of course, guaranteed once we have
succeeded in finding closed streamlines (cf. § IVc).

We believe the self-regulation described above to be the basic mechanism by which
the conditions in the interstellar medium approach those of a steady state. Thus, in
§ IV, when rapid phase transitions via thermal instability are present, the average
pressure is found to be uniquely determined by the condition that there be no net
transformation of material along a (nearly) closed streamline. We remark that if the
Galaxy were perfectly static on a large scale (no spiral structure), the average pressure
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would eventually tend to the vapor pressure P, because the only phase transition which
can take place in this case is that discussed by Zel’dovich and Pikel’ner (1969) and by
Penston and Brown (1970). This remark must also apply approximately if the spiral
structure were very weak.

e) Approximate Method of Solution

So far the development has been rather formal. We now adopt an approximate method
which greatly simplifies the solution of the dynamical equations. We assume that the
velocities of the cloud and intercloud medium do not differ very much from one another
except, possibly, immediately after a galactic shock in the intercloud medium (see
§ Vd). This situation arises because the gravitational and inertial accelerations are the
same for the clouds and the intercloud gas, and any differences between u. and u which
arise because of differences in the accelerations due to the “pressure” forces will be kept
below a few kilometers per second by the drag.’

As an initial approximation, therefore, we set u. = u. The adoption of this approxi-
mation means we must forgo the use of one of the momentum equations (17¢) or (17d).
(We must also forgo the possibility of following in detail the exchange of momentum
between the two phases.) The bulk of the gaseous mass and momentum is contained in
the cloud phase, but the bulk of the thermal energy is contained in the intercloud phase.
In this paper we are primarily interested in following the variation of the gas kinetic
pressure; therefore, we choose to use the momentum equation (17d) of the intercloud
gas. :

During compression of the entire medium, the intercloud gas tends to cool slightly
(i.e., & tends to decrease slightly) to maintain thermal equilibrium, whereas (1 — F,)
tends to increase somewhat because the clouds compress more easily than the inter-
cloud gas. As another approximation, therefore, we ignore the variation of (1 — F.)k
and % in equations (17b), (17d), (18b), and (18d). [It is found a posteriori that (1 — F.)k
and % do not vary by more than 10 percent along a streamline with average radius 10
kpc from the galactic center.] -

In the above approximations the equations of continuity (17a) and (17b) can be
divided by (1 — F,)h. In the absence of phase transitions, these equations now read

v (fc(Pc)u) =0 ’ (223')
V-(pu) =0, (22b)

where we have written P
Jo = @=Foh @3

as the fraction of the surface area (projected volume) occupied by the clouds relative to
that occupied by the intercloud medium. I the presence of phase transitions, we add the
separate equations of continuity to eliminate n.4,(M) and write

V-[(fepe) + p)ul = 0. (24)

In a similar way, if we use the equation of continuity for the intercloud medium to
eliminate the term nh.(Mv') = nh.(M)u in the momentum equation, we obtain equa-
tion (17d) in the invariant vector form

VGY) + (VX u) Xu= -V — 30%%) — 2Q, X u— p7'VP. (25)

5 The difference between the fluid velocities is probably less than that estimated on the basis of hydro-
dynamic drag alone since the lines of force of the interstellar magnetic field which thread through both
phases probably provide significant coupling of their motions. An estimate based on the square of the
Alfvén speed H2/4x[F.(p.) + (1 — F.)p] suggests that the presence of the magnetic field would also
hinder slightly the compression of the general medium (cf. Roberts and Yuan 1970).
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The jump conditions (18a), (18b), and (18d) now become

[ felp)u)® = 8m )" Om = Vau/(1 — F)b, (26a)

[ow.]i* = — 8, (26b)

[ felpe)(u + ¢®) + pu? + Pli2 = 0. (26¢)

In equation (26c) we have eliminated A, by adding equations (18¢c) and (18d).

Given ¢, ¢, U, together with the subsidiary equations (7), (14), and the jump condi-
tions (20), (21), and (26), we may solve equations (25), (24), and (15), or equations (25),
(22a), and (22b) to obtain the five variables p, u, f., and (p.). Equations (16) and (23)
may then be used to recover 4, k., and F..

Equations (22), (24), and (25) together with the scaling laws discussed in § Ilc¢
allow a simple transformation. If ¢ is changed by a multiplicative constant \, we obtain the
new solution simply by multiplying {p.), p, and P by the same factor \, but leaving f., h, u,
and the position in the Galaxy unchanged.

f) Asymptotic Form of the Equations

We suppose that the gravitational potential U can be decomposed into a static axi-
symmetric potential Uy and a spiral potential U which is static when written in rotating
cylindrical coordinates (@, ¢ = 8 — Q,¢, 2). Similarly, we write u = uo + u1, p = po +
p1, Where ug is a reference flow chosen to provide pure centrifugal balance against the
radial field in the plane z = 0:

—V0o(®) = —easQ2(w) , up = ess(Q — Qp), 2n

and where po is a reference mass distribution for the intercloud gas chosen to be axisym-
metric and (nearly) equal to the density of the intercloud medium averaged along a
circle of radius .

We follow Roberts (1969) and introduce now the orthogonal curvilinear coordinates
(n, & 2) where n = constant defines a curve of constant phase of the spiral gravitational

potential (cf. eq. [29] with sin [¢] < 1). For a small range of radii in the neighborhood of a

nearly circular streamline, we may approximate the geometric form of the spiral by a
logarithmic spiral. In this approximation, the coordinates (», £) and the associated unit
vectors (e,, e;) are obtained from (@, ¢) and (es, e3) by the transformation

(’7)_ cos i  sin i) (ln as) (e,,)_ cos i  sin ¢> (em) (28)
¢/ \—sini coss ¢ /)’ e/ \—sini cosi/ \ey/’

The spiral gravitational field (in the plane z = 0) associated with Uy is of the form
—VU1 = e,51 = — e, FusQ*(®) sin (—29/sin 1) , (29)
where F is the strength of the spiral field expressed as a fraction of the local axisymmetric

field.

If we assume that sin ¢ << 1, we may derive the nonlinear asymptotic form of the fluid
equations in a way similar to that given by Roberts. Under the assumption that § is a
constant along a streamline, the results along the part of the streamline which contains no
phase transitions can be written

pu, = constant ,  f.(p,)u, = constant, (30a)

Ut (2aQuy + wgy)
67] - (uq() + u‘r]l) (u'r’(] + %-,,1)2 — 22 ’ (30b)

g oty (30¢)

I 29 (up + )
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In equation (30b) @? is the square of the effective speed of sound for large-scale pressure
disturbances in the intercloud medium and is defined by

aP
a? = —eq) . 31
30 ) (31)

The quantities u,o and %z (denoted, respectively, as w.o and wjo by Roberts 1969) are
the n and £ components of the reference velocity while 2 is the square of the epicyclic
frequency:

Uy = B(Q — Qp) sinz, un=&(Q— Q) cosi, (32a)
2Q d
g 28 @ o
K = o Q) . (32b)

Along that part of the streamline which does contain phase transition, the fluid equations
read '

(fpe) + p)u, = constant , (33a)
(914,,1 26591451 + (0] 4]
= , 33b
an (uﬂO + “ﬂl) ( )
oug _ _ o un
I 2Q (Uyo + 1) (33¢)

Once the velocities #, = u,0 + %, and #; = g + %z have been obtained from an inte-
gration of equations (30) or (33), the position in the galaxy (7, £) may be recovered from
the characteristic equation

d§ _ w
i w (34)
We conclude this section with the following comment. Comparison of the jump condi-
tions which can be derived from equations (30) and (33) with those of equations (26)
reveals that a shock is consistent with the asymptotic approximation used above only
if e, is the direction normal to the shock front. Hence, we have the important consistency
requirement that the shock front must lie asymptotically close to a curve of constant phase of
the spiral gravitational potential. Consequently, the justification for the asymptotic ap-
proximations taken here can come only a posteriori. We need to obtain the family of
STS solutions (streamtube band through two periodically located skocks) at different
radii to construct the shock front in the Galaxy which forms the TASS pattern (fwo-
armed spiral shock pattern). If the TASS pattern does not pass the consistency test, a
two-dimensional integration of equations (22), (24), and (25) would be required.

IV. THE LARGE-SCALE GALACTIC FLOW

The asymptotic equations which were derived in § IIIf can be integrated numerically
to determine the steady large-scale flow of gas in the Galaxy. We are primarily interested
in doubly periodic solutions which contain shocks.® Numerical calculations have been

6 Nonlinear solutions without shocks are also possible (Vandervoort 1971). It is not possible to state at
the present time the regimes of applicability of the two types of solutions. We feel solutions with shocks to
be natural candidates whenever the spiral gravitational field is sufficiently strong to force the flow along
a closed streamline to be subsonic in part and supersonic elsewhere. The terminology “subsonic,” “sonic,”
and “supersonic” is used here to refer to the magnitude of #, compared with that of a. The shocks are
actually highly oblique, and the flow is always hypersonic if the total velocity # = (uy? + #z2)/2 is used
instead of the normal component %, to define the Mach number. See Appendix D.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972ApJ...173..557S

J: I oI73C5575!

A,

[mr2

No. 3,1972 GALACTIC SHOCKS 371

carried out for regions lying at distances 4-12 kpc from the galactic center. Because the
qualitative features are similar throughout this region, we shall present only the solu-
tions for the streamline which passes through the solar neighborhood. It has been
verified, by the way, that the TASS pattern in the range 4-12 kpc does in fact satisfy
the consistency requirement mentioned at the end of § II1f.

a) Uniqueness of the STS Solution

Given an equilibrium model for the Galaxy and the value of the pattern speed ,,
the properties of the underlying spiral gravitational field are completely determined up
to an arbitrary multiplicative constant for the relative strength F (Shu, Stachnik, and
Yost 1971). In our calculations we adopt a mass model which is very similar to Schmidt’s
(1965) model and a pattern speed @, = 13.5 km s ! kpc~! (Lin ef al. 1969). For &s = 10
kpc, the circular frequency @ = 25 km s~ ! kpc, the epicyclic frequency k = 31 km s™!
kpc~!, the z-oscillation frequency (920/922)Y2~ (0%UVo/d2%)? = 86 km s ! kpc},
f{vhile the pitch angle ¢ of the spiral is 6°9. We arbitrarily assume ¢ to be a constant, 8

m s~ 1,

In Appendix C we present the details of the procedure used to solve equations (30)
and (33). Here, we need only remark that the character of the STS solution is uniquely
specified once we are given F,, the fraction of volume occupied by the clouds, at one
point along the streamline (or alternatively, once we are given the average vlaue of F,
along the streamtube). In principle, this value can be determined by knowledge of the
total amount of gas present locally in the Galaxy. In practice, it is a free parameter
which can be adjusted to give a best fit for observations relating to the emission and
absorption at 21 cm.

For given F, small compared with unity, the solutions fall into three general cate-
gories if we vary the value adopted for F, the relative strength of the spiral gravitational
field. With F < 0:010 (at @ = 10 kpc), no solutions with two periodically located
shocks can be found; presumably, the flow occurs in this case without developing shocks.
With 0.010 < F < 0.033, solutions containing shocks are found, but phase transitions
do not occur anywhere along the streamline (in a steady state) because the total varia-
tion of the intercloud pressure does not span (Pmin, Pmax). With F > 0.033, phase transi-
tions are unavoidable if F, # 0. We present below the results of the calculations for the
cases F = 0.033, F, = 0 everywhere along the streamline (no clouds at all) and F =
0.050, F, ## 0 anywhere along the streamline. The value F = 0.050 corresponds to the
field strength believed on the basis of other dynamical studies to be actually present in
the solar neighborhood (Yuan 1969).

b) Results

Figures 2e¢ and 2b show the results of the calculations for the galactic flow when
F = 0.033, F, = 0 (dashed lines) and when F = 0.050, F, # 0. The latter case is com-
puted with F, chosen so that the space density of atomic hydrogen is 0.5 cm™3 when
averaged over the streamtube. The clouds then formally constitute 94, percent of the
gaseous matter immediately after the galactic shock; however, this relatively large
percentage may be reduced if the layer of intercloud gas is, as is likely, considerably
thicker than that given by the thermal scale height. In any case, the dynamics of the
intercloud medium is insensitive to the exact fraction of mass contained in the cloud
phase.

The reference axes in Figures 2a and 2b have been chosen so that 6§ — Q,¢ = 0° and
180° are the locations of the minima of the spiral gravitational potential (normalized in
the figures to —1 for F = 0.050) as encountered by the gas in its flow around the
Galaxy. The displacement of the shock from the location of the potential minimum is
~37°in @ — Q¢ but is only ~12° in the half-phase 7/sin 7 of V;. (The variable /sin 4
is unfortunately denoted as 6g, by Roberts 1969.)
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The dynamical solution for the case F = 0.033, F, = 0 bears a great similarity to that
calculated by Roberts (1969) on the basis of a one-component ‘‘turbulent” model of the
interstellar medium. However, our results refer to the intercloud medium rather than
to the clouds, and the sound speed a is associated with the gas kinetic temperature of
this medium rather than with the velocity ¢ of random cloud motions. Nevertheless,
because ¢ is numerically close to @ and because the compression of the intercloud medium
occurs nearly isothermally, the large-scale dynamics is similar for the two models.

The results for F = 0.050, F, > 0, present a more visible difference between the pres-
ent calculations and previous ones in the inclusion of the effects of phase transitions.
Notice that the jumps in pressure and density across the shock are nearly the same for
the solid and dashed curves but that the jump in the normal component of the velocity

120 -
5

ug (km/sec)

o

105

25
20
15
10

5

u.,]( km/sec)

10.6
10.4

Q10.2
x
$10.0

S 00

-~ —_
2 SP

‘0.8 I l_.\/l\l )

0° 60° 120° 180° 240° 300° 360°
8 - Q pt

()

FiG. 2.—The variation of the properties of the intercloud gas along a streamline which passes through
the solar neighborhood. The solid curves correspond to F = 0.050; the dashed curves, to ¥ = 0.033. For
the case F = 0.050, the horizontal dashed-dotted lines give the “average” values of the various quanti-
ties, whereas the labels SP, 4, B, 1, Sh, 2 correspond to special points whose properties are discussed in
the text. (@) The slight nonclosure seen in the curves for the radius @ of the streamline is discussed in
§ IVc. (b) Our definitions of the “averages” of the pressure, the atomic density, the electron density, and
the temperature give more weight to the regions of decompression (e.g., between points 4 and B) where
the gas occupies greater volume (see Appendix C).
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I'G. 2.—Continued

is substantially larger for the solid curve. The excess of postshock pressure which should
have resulted for the solid curve is “used” to transform intercloud material into cloud
material.

To discuss the solution for the solid curve in more detail, let us follow the flow along
the streamline. Immediately after the shock (labeled 2) the intercloud pressure is, of
course, very large—indeed, P(2) = Pp,x in this case. Despite the hindrance of the
perturbation Coriolis force, the perpendicular component #, of the gas velocity increases
as the gas accelerates under the combined action of the pressure and gravitational
forces. This acceleration continues and #, reaches the speed of sound a. The requirement
that the flow pass smoothly through the sonic point (labeled SP) coupled with the condi-
tion that the flow be doubly periodic determines uniquely the location of the shocks in
the Galaxy (see Appendix C for details).

After passage through the sonic point, the gas expands into supersonic flow, and the
acceleration caused by the Coriolis force eventually overcomes the deceleration caused
by the potential well. As the gas pressure drops steadily, it reaches the value Pyin at a
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point (labeled A) where the onset of thermal instability begins to transform cloud
material into intercloud material. At point A we shift our integration from equations
(30) to equations (33). The flow proceeds with phase transition maintaining the pressure
at Pnin until the point (labeled B) where u, reaches a maximum value and starts to
decrease. The ensuing flow is compressional, and the transformation of cloud material
into intercloud material ceases. Thus, at point B we shift our integration from equations
(33) back to equations (30). The flow now proceeds without phase transition until the
gas shocks by slamming into gas traveling at subsonic speeds halfway around the
Galaxy from where we first picked up the flow. Inside the shock layer (labeled Sh) there
is a transformation of intercloud material into cloud material which is exactly equal to
the total amount of the reverse transformation during the flow from point 4 to point B.
In the case shown, ~31 percent of the local intercloud material at point 1 becomes cloud
material by the time point 2 is reached; however, this number can be substantially in-
creased (indirectly) if depletion of cooling agents (notably C*) onto grains occurs in
clouds and effectively raises the value of Puin (Field, private communication).

¢) Nonclosure of the Streamlines

The solutions are doubly periodic in every variable presented in Figures 2a and 2b
except the instantaneous radius @ of the streamline and the value of the spiral gravita-
tional potential V; (which depends on @) seen by the gas in its flow. After a 180°
circuit around the Galaxy, the gas is actually found at a slightly smaller radius than that
at which it began its motion.

It is difficult to separate the fraction of the effect that is physical and due to the
torque exerted on the gas by the underlying spiral gravitational field (cf. the criticism,
of Roberts’s original calculations by Kalnajs as quoted by Simonson 1970) from the
fraction that is mathematical and due to the approximate nature of the asymptotics
adopted for our calculations. After all, the reduction in § ITIf of a two-dimensional
problem to a one-dimensional integration in the variable n entails a loss of one degree of
freedom which leaves us without any control over the radial variation of the streamlines.

Regarded in the above mathematical sense, the nonclosure of the streamline (~5
percent of the variation in ) is not serious since it is asymptotically small (of order sin 7).
The deeper physical aspect of the irreversibility associated with shocks is discussed
briefly in footnote 4 and in § VII.

d) The Experience of the Clouds in the Galaxy

Figure 3 presents the response of the clouds to the periodic compressions and de-
compressions of the intercloud medium for the case F = 0.050. The two curves for F,
are explained in the figure caption. The variation of the cloud radius R, is computed for
a 400 M, cloud without including the effects of self-gravitation.

The most important feature of figure 3 is the following. Even under the assumption
that ¢ is uniform, the interstellar clouds show highly nonuniform mean properties be-
cause of the substantial variations of pressure induced by the underlying spiral gravita-
tional field. Figure 3 shows that along a given streamline, the clouds’ atomic density
(n.), temperature (T.), electron density (%), and “filling fraction” F. may vary, re-
spectively, by a factor 40, 8, 4, and 5. These substantial variations are systematic and
provide, therefore, an excellent basis to test the theory. In reading these graphs, it
should be borne in mind that the velocity interval spanned by points 4 and B may well
constitute most of what radio astronomers generally attribute to the “interarm region.”
Individual clouds in the maximally decompressed state would be very difficult to detect
in 21-cm absorption. Indeed, even if only thermal broadening is considered, we estimate
a peak optical depth ~0.05 to result for a line of sight passing through the center of a
spherical 400 M, cloud which is in the fully decompressed state.
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F16. 3.—The variation of the properties of the cloud phase along a streamline which passes through
the solar neighborhood. The solid curves correspond to the case F = 0.050 with F, chosen so that the
clouds constitute 94 percent of the gaseous matter immediately after a galactic shock (at point 2). The
dotted curve for F, is computed for the same field strength F = 0.050 but under the assumption that the
clouds constitute 88 percent of the gaseous matter immediately after a galactic shock. The variations of
the other properties of the cloud phase are nearly indistinguishable for the two cases.

e) Some Preliminary Remarks on 21-Centimeter Absorption Measurements

If the systematic departures of the clouds’ mean motions from pure (differential)
rotation are ignored, we easily calculate that peak optical depths as large as ~7 can be
reached in spiral arms, whereas optical depths as low as ~0.07 can be reached in regions
between spiral arms. These correspond roughly to the observed values, although some
workers have attributed much smaller optical depths to “interarm regions” (cf. Quirk
1971).
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The interpretation of the combined emission and absorption profiles in the direction
of Galactic continuum sources requires special care. It is necessary to take into account
the systematic motions along the line of sight as well as the variations of the internal
properties of the clouds. In an oft-quoted case—in the direction of Cas A (de Jager
1970)—we discovered upon detailed examination that the velocity interval which is
generally attributed to the “interarm” region may correspond, in fact, to a small part
of the shock layer! (Because the velocity changes very rapidly in the shock layer, a given
velocity interval corresponds to a small part of the thin shock layer. We shall henceforth
refer to this effect as ‘“velocity stretching.”) Furthermore, a large region well behind the
Perseus “spiral arm” possesses a small gradient of the line-of-sight velocity (“velocity
crowding”’) and may contribute to the emission seen at the original velocity interval
because of some spillover due to the velocity dispersion of the clouds. If Cas A lies be-
tween the shock layer and the region of ‘“velocity crowding” (i.e., somewhere in the
Perseus spiral arm), as seems likely, then the observed ‘“anomalous” combination
7 < 0.02 and T, ~ 15° K can be understood because the (negligible) absorption is due
to a small part of a thin shock layer which is quite distinct from the region of “velocity
crowding” that gives rise to the emission. We are now in the process of making detailed
velocity-profile calculations to verify these conjectures.

V. THE INTERNAL STRUCTURE OF A SHOCK LAYER

In the previous sections we have treated the shock layer as a discontinuity in the
flow. In this section we calculate the internal structure of the shock layer in the inter-
cloud medium. As already mentioned in § I, we do not consider here any of the inter-
actions (e.g., phase transitions and drag) with the clouds. Thus, strictly speaking, our
calculations apply only if F, is identically zero; nevertheless, in § Vd, we shall make some
comments on the behavior of the clouds when they are treated as test particles injected
into the shock layer.

Whenever the intercloud gas is out of equilibrium, we can no longer bypass the energy
equation, the charge-balance equation, and the equation of state, and simply use the
equilibrium P-p relation. To make this discussion more concrete we follow Whitney and
Skalfuris (1963) (see also Field et al. 1968) in distinguishing four possible regions in the
vicinity of the shock layer: (i) a “preshock” region which may be influenced by the
radiation emanating from the shock, (ii) a ‘“‘viscous” region where elastic scattering re-
directs much of the normal component of the bulk momentum, (ii) an “internal relaxa-
tion’’ region where rapid ionizations and excitations occur to adjust the level populations
to local statistical equilibrium, and (iv) a radiative region where the shock-deposited
energy is emitted as radiation and the gas cools to a state of local thermal equilibrium
consistent with the downstream conditions.

In our calculations for the streamline which passes through the solar neighborhood,
the shock speeds obtained are of the order of 20-30 km s~ !. Since the incoming velocity
does not exceed ~50 km s !, corresponding to ~1 rydberg, the wavelengths of the
radiation emitted in the shock layer lie longward of the Lyman continuum, and the
radiative precursor can be ignored. ‘ A

The thickness of the viscous layer is a few atomie rean free paths, ~10~2 pc. Thus,
region ii—and, for that matter, region ili—is very thin in comparison with the entire
relaxation layer. We shall not discuss the well-known techniques (see, e.g., Zel’dovich
and Raizer 1966) for finding the internal structure of the “microscopic relaxation”
layers ii and iii but shall treat them as discontinuities in the flow.

Recombination and radiative cooling have the longest characteristic time scales,
and it is the structure of region iv which we wish to consider in detail. Under the assump-
tion that local statistical equilibrium prevails and that the medium is nptically thin to
the radiation emitted in the shock layer, the energy equation, the charge-balance equa-
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tion, and the equation of state for the intercloud medium read

V'(GU) + PV-u = 36(”; #e, T g‘) ’ (353)

V. (’n«gU) = g(”; ne) T; g-) ) (35b)

P = (n+ n)kT . (35¢)

In the above the internal energy per unit volume e is the microscopic kinetic energy plus
the ionization energy: '

e = 3P/2 + n.x, (36)

where x is the mean ionization potential of all atoms and ions whose ionization states
can be changed inside the shock layer. To complete the set of equations we require
equations (2), (22b), and (25).

Because we shall not discuss the internal structure of the viscous layer, we have not
included the viscous stress term in the momentum equation (22b) nor have we included
the viscous-dissipation and heat-conduction terms in the energy equation (35a). Thus,
we may need to supplement the fluid equations by jump conditions of the Hugoniot type.

In the general galactic flow, the various gradients are small, and the left-hand terms
of equation (35a) are easily verified to be at least one order of magnitude smaller than
either T or A (see § Ila for the definitions of T' and A). A similar statement holds for
equation (35b). Thus, outside the shock layer, it is a good approximation to take I' = A,
and I = R. These relations are, of course, equivalent to the assumption (1) of local
thermal equilibrium.

Inside the shock layer, the gradients of #. = u,, P, and p are large, and it is no longer
correct to set the right-hand sides of equations (35a) and (35b) equal to zero. We
assume, however, that the shock layer is thin so that the variations of U — $Q,%»? and
u|| = u; can be ignored inside the shock layer. Consistent with this approximation, we
may integrate equations (22b) and (25) in the direction normal to the shock front to

obtain .
pu, = constant = j, (37a)

P + pu,? = constant = pg . (37b)

If we write ds = wdn, equations (35a) and (35b) can now be written in the equivalent
one-dimensional form

d . d
(SP/2 — 3pu2/2) T2 = (5po/2 — djorr) T2 = 3¢ — 9x,, (38a)

L) =9 (38b)

We have transformed the energy equation to the more useful form (38a) by using equa-
tions (36) and (37) to eliminate all derivatives other than du,/ds; furthermore, we have
assumed that x is a constant and have used equation (38b) to rewrite d(n.xu,)/ds as 9x.
The term 5P/2 in equation (38a) corresponds, of course, to the enthalpy per unit volume
of a perfect monatomic gas.

We now show that a viscous layer must precede any other relaxation phenomenon.
From equation (38a), we see that the gradient of the velocity formally becomes infinitely
steep if , tries to pass the value 5po/8j,. This happens when #, is equal to the local
adiabatic speed of sound a, = (5P/3p)"/27 The formal occurrence of large velocity

7 The adiabatic speed of sound a, is always larger than the effective speed of sound ¢ for large-scale
pressure disturbances defined through equation (31). If the incoming velocity is subsonic with respect to
a, but supersonic with respect to a, there can in principle be a weak thermal shock which is not preceded
by a viscous layer. Such situations do not usually arise in practice.
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gradients indicates, of course, that viscosity cannot be neglected. A viscous layer occurs
physically because the incoming gas is incident “deafly” upon gas immediately down-
stream from it, and the slamming of gas into gas produces a thin viscous shock.

a) Jump Conditions for the Viscous Layer

We treat the viscous shock as a discontinuity and obtain the jump conditions on
energy and electron density by integration of equations (38) across the viscous layer
when the right-hand sides are taken to be continuous:

[(5;170/2 - Zjoun)un]ll, = [(5P/2 + %P“n2)uﬂ]ll’ =0, (39a)
[nanlt’ = 0. (%)

The indices 1 and 1’ refer to positions immediately preceding and immediately following
the viscous shock layer. Equations (39a), (37a), and (37b) lead, of course, to the usual
Hugoniot relations while equation (39b) together with equation (37a) expresses the
simple fact that the fractional degree of ionization is “frozen” in the viscous layer.
The jump condition on the temperature is, of course, obtained from the equation of
state (35¢).

b) Method of Solution and Some General Considerations

The mathematical prescription for obtaining the structure of the complete shock
layer is now clear. We begin by subjecting the incoming flow to a viscous shock. With
the shocked ‘‘initial conditions at 1’,”” we integrate equations (38a) and (38b) together
with the subsidiary equations (?) (35c) (37a) and (37b). The critical velocity 5po/8&jo)
is always spanned inside the viscous layer so there are no further difficulties involving
large velomty gradients.

In general the viscous shock throws the gas badly out of ethbrlum so that the right-
hand sides of equations (38a) and (38b) are no longer zero. The integration is carried
as far as is needed for the variables to relax asymptotically to the values appropriate
for the far-downstream equilibrium conditions. This will eventually occur since the
right-hand sides of equations (38a) and (38b) force the variables to change until 3¢ and 4
are both zero. It is easy to verify that the far-downstream conditions will automatically
be consistent with those obtained at point 2 from the jump conditions (26) when 6
and f, are taken to be zero. Hence, what appears at first sight to be a boundary-value
problem reduces, in fact, to a much simpler initial-value problem.

If we plot the “shock adiabat” in the usual way, we find that there is, of course, an
increase in the specific entropy of the gas as it crosses the viscous layer (from point 1 to
point 1’); but there is, in fact, a net decrease from point 1 to point 2. This last result can
be seen from the approximate polytropic relation (6) which relates the equilibrium
states 1 and 2 with an effective y = (N 4+ 1)/N ~0.75 < 5/3 for the intercloud gas.
The net decrease of entropy does not violate the second law of thermodynamics inas-
much as the gaseous system considered independently of the emitted radiation field and
the external sources of heating does not constitute a closed system.

There exists a simple scaling law which applies to the structure of the shock layer. If
we multiply ¢ by A, the mass flux j, and momentum flux p, (determined by the calcula-
tion of § IV) also change by a factor A. Therefore, the solution for equations (37) and
(38) can be obtained simply by scaling p = mn, P, n., and s~ by the same factor A, but
leaving u, and T unchanged. The inverse scalmg of s (i.e., the thickness of the relaxatlon
layer) by the factor N is necessary because of the equldlmensmnal property (4) of the
functions 3C and 4.

¢) Results

Figure 4 shows the interior solution for the shock in the critical case when the strength
of the spiral gravitational field is 3.3 percent of the axisymmetric field. The abscissae
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F1c. 4.—The internal structure of the shock layer in the intercloud gas when all interactions with the
cloud medium are ignored. The preshock (horizontal solid lines) and postshock (korizontal dashed lines)
conditions correspond to those obtained in the solution for the large-scale galactic flow when the strength
of the spiral gravitational field is taken to be 3.3 percent that of the local axisymmetric field. Immediately

after the “viscous layer,” the velocity, pressure, atomic density, electron density, and temperature attain
‘the values marked by the horizontal ticks.

show the distance and time elapsed as we follow the flow downstream in the direction
normal to the shock front. The horizontal solid lines indicate the incoming upstream
values; the horizontal dashed lines, the asymptotic downstream values. The initial
jumps in the viscous layer are marked by the ticks.

We call attention to the particularly fast relaxation for the pressure. The intercloud
pressure reaches 90 percent of its downstream value in less than 1 pc, i.e., less than
0.13 X 108 years after the beginning of the shock. Note also the relaxation phenomenon
for the thermal variables T" and #,. There is a tremendous transient heating in the
viscous layer, followed by rapid radiative cooling which results in a temperature ‘‘spike.”
Thereafter, T relaxes asymptotically in a long tail to its downstream equilibrium value.
The fractional ionization is frozen in the viscous layer, and the density of free electrons
suffer initially a simple compression. Thereafter, the increased temperature results in a
higher rate of ionizations by electron impact and a lower rate of recombinations by
electron capture, and #, overshoots its downstream asymptotic value. Eventually, and
inevitably, recombinations reassert themselves and #. settles asymptotically to the
downstream value. We note that the overshoot of T" and #, is not depicted in the “ex-
terior solution,” figure 2b, for the galactic shock because it is hidden as detail of a region
approximated to be infinitesimally thin. Furthermore, consistent with the assumption
that the case considered lacks phase transition, no overshoot occurs in figure 4 for the
pressure P.
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The width of the entire shock layer, ~50 pc, is determined by the slowest relaxation
process—in this case, the process of recombination. The time 1.0 X 107 years spent in
the shock layer is short in comparison with the time 2.7 X 10® years spent between
shocks, so the treatment of the entire shock layer as a discontinuity in the large-scale
flow is well justified. The situation may be less favorable, however, if interactions with
the clouds are taken into account.

d) Comments on the Behavior of the Clouds in the Shock Layer

Figure 4 shows the normal component #, of the intercloud gas to be sharply de-
celerated in the galactic shock layer. The deceleration of the clouds must be much less
abrupt since it arises as a result of the drag between the two phases and the diffusive
transport of momentum due to cloud-cloud collisions. Thus, a test cloud entering the
shock layer at the upstream fluid velocity ~20 km s~! would cross one cloud diameter,
say 20 pc, in 1 X 108 years and would then find itself in a region where the gas kinetic
pressure is ~5 times higher than its internal pressure (which has had no time to adjust
to the new conditions) and where the velocity differential between it and the ambient
medium is ~15 km s~ . The resulting effects on the cloud are too complicated to discuss
in detail here, but we give below the general qualitative features which can be expected
to be present.

The sudden pressure loading would send a shock, traveling at 2-3 km s™!, into the
interior of the cloud. This shock would probably gain in strength as it propagates in-
ward, because of the implosion geometry. The internal shock is the mechanism by which
the cloud is compressed to its downstream conditions. Despite the nearly simultaneous
initiation of the pressure pulse on the entire surface of the cloud, the internal shock
front would lack spherical symmetry because the “intercloud wind”’ resulting from the
relative motion tends to produce a highly asymmetric distribution of dynamic pressure
which is largest at the leading face of the cloud. This would tend to flatten the cloud
somewhat. (At low relative speeds and comparable gas kinetic pressures inside and out-
side the cloud, the asymmetry in the distribution of dynamic pressure would tend to
drive a dipole-like internal circulation in the cloud which offsets the tendency for the
cloud to flatten.)

If we write w for the normal component of the cloud’s velocity relative to the inter-
cloud medium, A for its frontal area, and / for its typical thickness in the direction of
travel, the equation of motion for the test cloud can be written

pcAzifl"—t” — —CAw/2, (40)

where the dimensionless drag coefficient C is typically ~1. Thus, the characteristic
distance required for drag to stop the cloud relative to the intercloud medium is 2p.l/p.
Immediately after the viscous shock in the intercloud medium but before the cloud has
had sufficient time to compress, this distance scale is comparable to the distance,
(n;A)~* = I/F., required for cloud-cloud collisions to effect significant momentum
transfer. However, the time required to compress the clouds to their downstream states
is comparable to, if not shorter than, the most optimistic estimate of the deceleration
time, and it is difficult to obtain from such crude arguments a precise numerical estimate
of the deceleration distance of the cloud phase. Under certain circumstances the decelera-
tion distance of the cloud phase may be so long (much greater, say, than 200 pc) that it
is inappropriate to think in terms of a shock in this phase. In general, there may be a
nonnegligible region (~200 pc in thickness) where the clouds move with a mean velocity
which is substantially different from that of the intercloud phase.

The small-scale dynamics of the intercloud gas, in the vicinity of a cloud which plows
through it, would also be rather complicated. The relative motion is initially supersonic

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972ApJ...173..557S

J: I oI73C5575!

P

[o724

No. 3, 1972 GALACTIC SHOCKS 581

and would tend to produce a detached “bow shock’ in the intercloud gas. The boundary-
layer flow would have a line of separation, and there is a turbulent wake toward the
rear of the cloud. Because of the inward acceleration of the heavy cloud gas by the light
intercloud gas and because of the large shear across the interface, the interface layer
itself tends to be unstable to a combination of the Rayleigh-Taylor and Kelvin-Helm-
holtz instabilities (Chandrasekhar 1961). The latter effect, coupled with the internal
motions of the cloud and the additional compression of the intercloud gas behind the
bow shock, may result in an ability for the clouds to act as ‘“‘nucleation centers” for the
transformation of intercloud material into cloud material.

The above discussions are, of course, highly speculative without further calculations.
Some of these we hope to perform and present in a future paper.

VI. GRAVITATIONAL INSTABILITY OF CLOUDS AND STAR FORMATION

It is obvious from the discussion of § Vd that the compression of clouds in the galactic
shock layer is a fully dynamic affair. Of course, after ~107 years, a cloud which does not
collapse gravitationally will inevitably reach a state of rough hydrostatic equilibrium
consistent with the ambient downstream pressure. Therefore, it is possible to derive a
sufficient condition for the gravitational collapse of a cloud by asking whether there
exist any stable states of hydrostatic equilibrium accessible to the cloud for a given
external pressure. Alternatively, for a given mass, we may ask for the range of external
pressure to which the cloud may be subjected without necessarily causing gravitational
collapse.

Such conditions have been given, for an isothermal gaseous sphere bounded by ex-
ternal pressure, by Spitzer (1965), who used the analysis given by Ebert, by Bonnor,
and by McCrea and the tables tabulated by Chandrasekhar and Wares. A self-gravita-
ting cloud heated by an external flux of energetic particles or photons will, however,
not be isothermal since (i) the denser regions near the center must be cooler in thermal
equilibrium than the more rarefied regions near the surface if the flux is uniform through-
out the cloud, and (ii) the flux may be attenuated toward the center so that the central
regions may be even cooler than estimated under the assumption of uniform flux. A
cloud with such properties is easier to compress than an isothermal sphere; therefore,
we expect it to be also more prone to gravitational instability.

a) Formal Development

To obtain a quantitative estimate of the modifications in the stability criterion, we
assume, for simplicity, a uniform flux of low-energy cosmic rays throughout the cloud.
The pressure P, of the gas in the cloud then satisfies the approximate polytropic relation
(6): P, = Kp,M+VIN where N < —1.0 and K = K({) a constant for given ¢{. For
generality, we leave N and K unspecified for the time being. The only novel feature in
the analysis which follows is that the polytropic index N is negative. We remark that
the continuous sequence of polytropes with positive indices to polytropes with negative
indices occurs not through zero, but through infinity—i.e., through the isothermal
sphere. ‘

We assume that the self-gravitating cloud is nonmagnetic and nonrotating, and is in
a state of hydrostatic equilibrium:

L) = ~gHe0) - Dy = gy (41)

Except for a sign, we may use the standard transformation (Chandrasekhar 1939) to

write . "
pe(r) = p.(0)0¥(¢) with » = af and o= %— 41rG(f\;cE'(;)]3VI“{1)’N} . (42)
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Equations (41) may then be manipulated to read

1d/,,d0\ _
which is to be solved under the initial conditions 8(0) = 1 and 6’(0) = 0.
The power series solution of equation (43) valid near the origin is obtained as

6() = 1+ 38 + oNE* + ... (44)

The full integration of equation (43) to reach the cloud’s outer boundary at £ = &
can be carried out numerically for general N < —1. For given K and N, the radius
R. = af, the surface pressure P,(R.), and the total mass M.(R,) can be found as func-
tions of p.(0) in the usual way. We wish, however, to consider a sequence of clouds
characterized by different values of £ with fixed total mass M (R,) = M, rather than a
sequence with fixed central density p.(0). Some straightforward algebra using the first
relation of equation (41) and the relations of equation (42) yields the central density
of the former sequence:

pu(0) = (5 L) [6 G216 43)

In the above L is a constant for given K, N, and M, and is the natural length scale
in the problem:

[ M\0-MIG-N) (N +1) K]NI(3—N) L

L=\ [ 4rG ‘ (46)

In terms of this length scale, the radius, the surface pressure, and the average density of
the cloud are given by the relations

R. = Lofal£%0' (£1)] V1161 (47a)
P.(R;) = K (Zl]l—{-r L0_3)<N+1)/N ONFL(E)[£270" (£1) | 2NHVIGID (47b)
Pav = 4‘:,%—3 = (%_ Lo_3> 3¢ &0 (£) | PN (47¢)

A measure of the degree of central concentration is given by the ratio of the central
density p,(0) to the average density pav:

pe(0) &
Pav _3[2120,(21)] | . (48)

From the series solution (44), we easily verify that the sequence of clouds charac-
terized by small £ are nearly homogeneous, p.(0)/pav = 1, and satisfy the approximate
relation P.(R,) = Kpa.w WTV/¥, Evidently self-gravity plays an unimportant part in
binding such clouds. The same is not true for larger values of £, as can be seen explicitly
from table 3 for the specific case N = —3.0. In table 3 we have tabulated 6(£&), £%0(£),
the dimensionless radius &[£:26'(&)]@-D/G-M) the dimensionless pressure V(&)
[£:20" (&) 2W+D/GEN)and the ratio p.(0)/pay as functions of the parameter £.

As & increases from zero, the surface pressure increases, and the cloud becomes more
centrally condensed as self-gravity becomes increasingly more important for binding the
cloud. A critical value & = £, = 3.80 exists where the surface pressure reaches a maxi-
mum value 0.643. For pressures larger than this value there are no equilibrium con-
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TABLE 3
PROPERTIES OF BOUNDED POLYTROPIC GAS SPHERES WITH N = —3.0
& 0(&) &%’ (&) Radius Pressure pc(0)/pav
0.00..... 1.00 0.000 @ 0.000 1.00
0.20..... 1.01 0.003 10.52 0.019 1.02
0.40..... 1.03 0.020 5.36 0.071 1.05
0.60..... 1.06 0.065 3.70 0.145 1.11
0.80..... 1.10 0.144 2.91 0.228 1.19
1.00..... 1.15 0.259 2.46 0.310 1.29
1.20..... 1.20 0.409 2.18 0.383 1.41
1.40..... 1.26 0.591 1.99 0.445 1.55
1.60. 1.32 0.801 1.85 0.495 1.70
1.80..... 1.38 1.04 1.76 0.535 1.88
2.00..... 1.45 1.29 1.69 0.565 2.07
2.20..... 1.51 1.56 1.63 0.589 2.27
2.40..... 1.58 1.85 1.59 0.606 2.49
2.60..... 1.64 2.15 1.56 0.619 2.73
2.80..... 1.70 2.46 1.54 0.628 2.97
3.00..... 1.77 2.78 1.52 0.634 3.23
3.20..... 1.83 3.11 1.50 0.639 3.51
3.40..... 1.89 3.45 1.49 0.641 3.79
3.60..... 1.95 3.80 1.48 0.643 4.09
3.80..... 2.00 4.16 1.47 0.643 4.40
4.00..... 2.06 4.52 1.46 0.643 4.72
4.20..... 2.12 4.89 1.46 0.642 5.05
4.40..... 2.17 5.26 1.45 0.641 5.40
4.60..... 2.23 5.64 1.45 0.639 5.75
4.80..... 2.28 6.03 1.45 0.637 6.12
5.00..... 2.33 6.42 1.45 0.636 6.49

figurations possible for the cloud. A second branch of equilibrium configurations exists
at lower pressure with & > £,, but these are configurations of unstable equilibrium
analogous to those well known for bounded isothermal spheres (see Spitzer 1968).

In summary, for given M, hydrostatic equilibrium with a given (dimensional) surface
pressure P,(R.) does not exist if P.(R.) exceeds a certain critical value. Conversely, for
given surface pressure P,(R.) equal to the pressure P of the ambient intercloud medium,
there exists a critical mass M = M, beyond which clouds are unstable toward gravita-
tional collapse. A little manipulation yields M, as

B P (3—N)/2(N+1) _ (N + I)K 8/2 [2*201(5*)]
M, = 4= (E) [ 4rG ] e-Mr2(g,) | “

An alternative form for equation (49) which is a little more convenient for computa-
tional purposes is obtained by using the relation P = P.(R.) = K[p,(R,)]¥*V/V to

yield
M, = ME)[p(R)IHP/GC)* (50a)

*20[ *
ME) = @m— (F + S (50b)

In table 4 we have tabulated £,, 0(£,), £,20'(£,), 0:(0)/pav, pc(0)/pc(R:), and M(E,)
for various values of N. For P = Ppni, we use N = —1.3 (see table 1), and equation
(50a) yields M, = 3000 M,. For P = Py, we use N = —4.0, and equation (50a)
yields M, = 120 M. The above masses should be scaled by a factor A=Y/% if ¢ is scaled
by a factor A. On the other hand, if there are effects (e.g., depletion of metals onto
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TABLE 4

BouNDED PoLyTROPIC GAS SPHERES ON THE MARGIN OF STABILITY

N £, o) EMGE)  pO/ew  pl0)/pdR)  IME
—1.00......... 1.00 1.00 0.000
—1.50......... 5.70 3.35 16.0 3.86 6.13 0.105
—-2.00......... 4.78 2.63 8.91 4.08 6.90 0.225
—2.50......... 4.22 2.25 5.85 4.28 7.58 0.327
-3.00......... 3.80 2.00 4.16 4.40 8.06 0.411
—3.50......... 3.50 1.84 3.16 4.52 8.52 0.482
—4.00......... 3.26 1.73 2.50 4.62 8.86 0.541
— .. .. .. 5.78 14.3 1.18

interstellar grains, internal circulation or turbulence, internal magnetic fields) which
increase the “effective pressure” inside the cloud above the normal gas kinetic pressure,
we may crudely account for these effects by increasing the value K in equation (49)
without increasing P. The masses M, which are marginally stable then increase as
K?NI+D_ The exponent 2N/(N + 1) > 2 for N < —1, so the masses M, are very
sensitive to such an an increase of the “‘effective internal pressure.” One major difference
between Roberts’s (1969) estimate of the critical mass for collapse and ours is that we
do not include the effects of internal turbulence in the support of the cloud. Rather, we
would follow Stone (1970) in attributing the observed internal velocity dispersion of
clouds mostly to the bulk expansional motion that eventually follows the collision of
two clouds.

b) Comments

Our values for the critical masses for stability are, of course, approximate in the
sense that the polytropic law (6) applies with only approximate validity for the cloud
phase. Nevertheless, a comparison of tables 1 and 4 shows the true polytropic index not
to vary appreciably over the range of densities from surface to center encountered in a
cloud on the margin of stability. Furthermore, exact calculations of the critical masses
(with P = Ppni, and P = P,) by Penston and Brown for an equilibrium P-p relation
which is similar to ours yield results in rough agreement with ours. We have not felt
exact calculations to be worthwhile because the thermal-balance calculations are
themselves no longer reliable in the central regions of a marginally stable cloud when
P = P, .x. There, the atomic density would reach ~400 cm~3 and cooling by radiation
in the fine-structure lines (‘“forbidden’ transitions) would be quenched by collisional
deexcitation.

In any case, interpreted literally our results imply that no clouds in excess of 3000 M,
can exist anywhere along a circle of radius 10 kpc in the Galaxy, whereas a galactic
shock wave will necessarily trigger gravitational collapse in all preexisting clouds with
masses greater than 120 M. Collapse may be induced in even smaller masses because
transient pressures higher than P, can be reached inside the galactic shock layer. Of
course, these estimates would be considerably modified if ¢ has a different value in
spiral arms than between spiral arms or if a cloud has means of support other than its
internal gas kinetic pressure.

Our purpose here is not to give definitive limits for the masses of clouds which are
marginally stable, but to emphasize that a “mere” increase of the external pressure by a
factor 5 suffices to reduce the critical cloud mass for stability by a factor 25 = 5% This
latter factor is to be contrasted with the factor 52 = 2.2 which would have resulted if
the clouds were compressed isothermally (cf. eq. [49] in the limit N — — ). The very
substantial decrease in the threshold for gravitational collapse is explained by the
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greater compressibility of the gas and the nonlinear nature of self-gravity. This facet of
our model, coupled with the concept of galactic shocks, goes a long way toward explain-
ing why the regions of substantial star formation are delineated very sharply in certain
external galaxies.

¢) The Problem of Fragmentation

Finally, we remark that the gravitational collapse of clouds of a few thousand solar
masses would not, of course, lead to the formation of a single star. (The clouds of ~100
M, offer fewer problems in this respect.) We expect the collapse of such clouds or of
complexes of such clouds to lead to the formation of a star cluster. The fragmentation by
gravitational instability of such a gas cloud is an old and controversial issue (cf. the
reviews by Layzer 1964 and by Hunter 1967). An essential difficulty is that the timescale
for the formation of gravitational subcondensations is of the same order, ~107 years,
as that for the free-fall collapse of the cloud as a whole.?

We wish, here, merely to add two possibilities to the list of those which have been
discussed previously. Fragmentation may proceed if large fluctuations in density (sub-
clouds) are initially present in the interior of the cloud because a (hypothetical) third
phase involving molecules and/or dust can exist in rough pressure equilibrium with the
usual cloud phase. It may also proceed if regions slightly denser than average achieve a
separate identity by thermal processes on a timescale of ~10* years because such regions
will cool more rapidly than the average after the entire cloud has been subjected to an
internal shock (see § Vd). The latter mechanism is closely related to the thermal insta-
bilities discussed by Field (1965), Hunter (1966), and McCray and Schwarz (1971). In
any case, the self-gravity of the subcloud would eventually be required to separate it
permanently from the rest of the collapsing cloud.

VII. DISCUSSION

We have seen that the large-scale dynamics of a two-component model of the inter-
stellar medium is similar in many respects to that of the one-component model. How-
ever, by introducing the two-component model, we can present a clear physical basis for
the mechanisms of the production of the shock and of the compression of the clouds.
We also acquire the possibility of transitions between the two phases.

In particular, phase transitions of cloud material into intercloud material results in
maintaining the pressure of the regions between spiral arms at the lowest possible level
consistent with the existence of clouds. Thus, the detection of interstellar clouds in these
regions by 21-cm absorption should be very difficult. The last comment is related to a
more general one. While it is possible to interpret 21-cm emission profiles without ex-
amining the thermodynamics of the medium in detail (provided one accounts for the
effects of “velocity crowding” and ‘‘velocity stretching”), it is dangerous to do the same
for the absorption profiles. The reason is that the temperature of the clouds, in our
model, varies systematically from T~ 30°-50 ° K in spiral arms to T~ 200° K between
spiral arms.

An important question not answered in this paper but under investigation by P.
Woodward (private communication) is the relation between flow solutions that contain
shocks and those that do not. Shock waves are essential only for defining a narrow lane
of star formation—not for the existence of the process itself. The thick spiral arms and
somewhat mottled appearance of some Sc galaxies may well be associated with an
underlying compression of the interstellar medium which is more smooth than that
obtained in the usual shock picture.

8 Numerical calculations by Larson and by others (see the review by Penston 1971) have partially
alleviated this problem by showing that a centrally condensed core, at least, will collapse well before the
envelope has contracted appreciably. Such calculations, however, start with a fairly dense object (n ~ 105
cm3) of stellar mass as a postulate and do not indicate how a large interstellar cloud will fragment into
many smaller subunits which can be reasonably identified with protostars.
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Apart from the above question and the calculation of the (presumably small) differ-
ences of velocities between the two phases, our work on the large-scale problem is fairly
complete. The same is not true for the small-scale phenomena. We have given in this
paper a criterion for the gravitational collapse of an interstellar cloud. In particular, for
that rare nonrotating 120 M, cloud devoid of internal turbulence and magnetic fields,
the shock mechanism may be capable of producing the formation of a single star from
its centrally condensed core. Left unsolved is the problem of the dynamical collapse of a
much larger cloud under sudden loading and the (possibly thermal) mechanisms by
which it fragments into a cluster of protostars. We have also not investigated the in-
ternal structure of a shock later which includes the interactions between the two phases.
Such an investigation may show that the relaxation layer associated with the cloud phase
is, under certain circumstances, too thick to justify treating it as a discontinuity in the
large-scale flow.

The present work examines the effects of dynamical forcing of the interstellar medium
by a background spiral gravitational field. What about the reaction of the medium back
onto the spiral structure? Here, the key role played by galactic shocks is probably one
of dissipation. The nonclosure of the streamlines discussed in § IVc indicates that the
periodically shocked gas tends to lose energy and angular momentum. If this energy
and angular momentum is gained by the spiral wave, instead of being radiated away,
say, or going toward rearranging the basic state, then the process may damp an other-
wise steady wave, or help to limit the amplitude of a slowly growing wave. This possi-
bility arises because the spiral waves of the type considered by Lin and Shu (1964, 1966,
1972) contain negative densities of energy and angular momentum (cf. Toomre 1969;
Shu 1970; Kalnajs 1970). However, the physical effect is probably small, and a more
careful analysis of this point is required to determine whether the shock mechanism
does play an important role in the problem of the permanence of spiral structure.

Finally we remark that our calculations have been formally performed for a steady
state. Input concerning the mass distribution of clouds and the birth function of stars
would allow the use of these calculations to estimate the chemical evolution of the
Galaxy.

We wish to acknowledge fruitful discussions with Professors C. C. Lin, L. Woltjer,
George Field, Stephen Strom, Alar Toomre, James Mark, Deane Peterson, and Richard
McCray. The numerical calculations were carried out at the Computation Centers at
Stony Brook, at M.I.T., at the NASA Institute for Space Studies, and at Charlottesville.
The work of F. H. S. was supported in part by NSF grants GP-13061 (Stony Brook)
and GP-22720 (M.I.T.); that of C. Y., by the Faculty Research Award No. 1349
(CUNY); that of D. W. G., by NSF grant GP-18476; and that of W. W. R., by NSF
grant GP-25618.

APPENDIX A

KINETIC DESCRIPTION OF THE CLOUDS

Let f(x, v, M, t)d*xd*dM be the number of clouds with mass between M and M +
dM, with position in the volume element d%x centered about x, and with velocity in the
volume d% of velocity space centered about v. The dynamic evolution of f is governed
by the kinetic equation

of 90 9 ¥  Fo M 2y
.b_t+5;.(vf)+gl;'[<—a+ﬁ+—ﬂvrel f]‘l'm(Mf)

= () + (.o @D
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In the above U is the gravitational potential of the Galaxy, Fi. is the force exerted on a
cloud by the intercloud medium, M is the rate of change of the mass of a cloud due to
phase transition, and v, is the velocity of the material involved in the phase transition
relative to the velocity of the cloud. The two terms on the right-hand side represent,
respectively, the effects of (inelastic) cloud-cloud collisions and of (random) mechanisms
of cloud accelerations by small-scale processes (supernovae explosions, expanding H 11
regions, etc.). We have ignored the net sink of clouds due to star formation.

To make contact with the usual model of “standard clouds” we introduce the follow-
ing “moments” of the distribution function:

Mg 1
< n{ M) > =J <M> fd®dM , (A2)
ns( M)u, Mv

where the various symbols are defined in § ITI. In this paper we have preferred to use the
combination F.(p.) in lieu of n,(M) (see eq. [8]).

We assume that cloud-cloud collisions and the random mechanisms of cloud accelera-
tions do not lead to any systematic changes locally of either the total mass contained
in the form of clouds or the total vector momentum possessed by the clouds. Thus, the
right-hand side of equation (A1) has the properties

S (o) [+ G, = () 83

These important properties allow us to write the first two “moment equations” in the
usual way as the conservation relations (10a) and (10b) for mass and momentum. Be-
cause the collisions are inelastic, the analog of the usual energy equation cannot be
written down without a detailed knowledge of the structure of the right-hand terms in
equation (A1). Furthermore, if clouds coalesce or splatter upon collision, the conserva-
tion of mass is no longer synonymous with the conservation of number.

In equations (10a) and (10b) we have written (M) and n,(Mv’) for the integrals

(rst) = (M(vf,,rel))fd%m,_ a9)

whereas in equation (12) we have implicitly assumed that v is zero if cloud material is
being transformed into intercloud material and is (u — v) if intercloud material is being
transformed to cloud material by accretion onto the preexisting clouds. The preconceived
notion that clouds act as “nucleation centers” for the latter transition is implicit in our
notation in § ITII; however, it does not constitute an essential ingredient in our macro-
scopic treatment of phase transitions.

In equation (10b) we have also assumed f to be isotropic in (v — u.) so that the stress
tensor is diagonal:

S (v — u)(v — w)MfdvdM = Flp)c*l, (A5)

where I is the unit dyadic. In theory the determination of the local value of ¢ should
come from the balancing of the two terms on the right-hand side of equation (A1) be-
cause these two terms have associated timescales which are at least one order of mag-
nitude smaller than those of the terms on the left-hand side. For practical calculations
we have taken ¢ to be a constant, 8 km s~ 1. We further remark that the assumption of
isotropy of fin (v — u,) must break down in the vicinity of a galactic shock layer where
u, changes appreciably over one mean free path for cloud-cloud collisions. The inclusion
of this effect in a fluid description would presumably lead to terms analogous to those of
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“viscous stress’’; however, the proper treatment of the structure of the ‘“viscous shock”
in the cloud phase may require a kinetic description.
In equation (10b) we have written the average body force exerted on the clouds by
the intercloud medium as

S Fi fd3vdM = —FVP — n[Cr(R*(1 — Fo)iplu, — ul(u. — u)], (A6)

where the term in brackets represents the drag on an average cloud because of the rela-
tive motion (u, — u) in an intercloud medium of density p which occupies a fraction
(1 — F,) of the volume of interstellar space. If we compare the expressions giving the
drag force in equations (10b) and (A6), we find that the coefficient D is indeed given by
equation (11).

APPENDIX B
SIMPLE MODEL OF THE VERTICAL STRUCTURE

The noncircular flow induced by the spiral gravitational field of our Galaxy will not
produce fluid velocities %, in the vertical direction which are in excess of 2-3 km s~ !, The
rms random velocity of the clouds and the thermal speed of the intercloud medium are
>8 km s7!. Since pressure and inertial effects are proportional to the square of the
velocities, the vertical structures of the two phases, as determined by the z-component
of the momentum equations (10b) and (13b), nearly satisfy the conditions of local
hydrostatic balance:

oP a0

9 2 = — AT 1
E (Fepe)c®) = —Fpc) 9z’ 9z Pz (B1)

To integrate these equations analytically, we make the following ad hoc assumptions.
We assume that ¢ is independent of z. We denote any variable evaluated at z = O by a
superscript zero and further suppose that p and { have identical distributions ¢ in z:

p=PO¢’ §=§0‘I’; (BZ)

where ¢ = 1 at z = 0. (Of course, the assumption that the primary flux of ionization
falls off with increasing z would be incorrect even qualitatively if the sources of ionization
were extragalactic.) Because of the scaling law (5) for Peq, equations (14) and (7) imply

P =Py, {pe) = (o) (B3)

1.e., the mean temperatures of the two phases are independent of z. The integrations of
equations (B1) now yield

Pip) = P e (-2 5), v=ew(-%r). B9

The source for the gravitational potential is primarily the disk stars. Since ¢? and
P°/p® are small in comparison with the mean square dispersive velocities of the disk
stars and since 30/dz = 0 at z = 0 because the latter is assumed to be a plane of reflec-
tion symmetry, z = 0 is a saddlepoint for the distributions (B4). In the lowest order of
approximation, we may replace U — U° by the first nonvanishing term in its Taylor
series expansion about z = 0:

00 22
— 0 — - -
0V — ( =) 5 (BS)

Thus, the distributions (B4) are approximately Gaussians in z with effective thickness
he and & defined through equations (16). The integrations of equations (10) and (13)
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over z may now be carried out asymptotically by the method of steepest descent by
treating U, u,, u, (M), and (M) as functions which are slowly varying over distances of
h. or k. The integrated forms of equations (10) and (13), written to lowest order, are
identical to their original forms except that everywhere we see F.(po.), #s, (1 — F,)p,
or (1 — F,)vP; we replace it by F.%p,)%., n,h., (1 — F*)p%, or (1 — FO)v(P%);
the;reas everywhere we see U, u., u, (M), or (M), we replace it by 0°, u.%, u°, (M)°, or
Mo

Two terms in equation (10b), F,.v P and D(u. — u), give potential difficulty because
equations (B3) and (B4) imply that F, is a slowly varying function of 2 only if ¢? should
happen to be nearly equal to P?/p°. Nevertheless, we shall replace F.v P by F.%(P)
on the ground that the former is, in any case, small in comparison with v(F.{p.)c?); and
we shall replace D by D% on the ground that any error incurred in this way can be ab-
sorbed in a redefinition of C. If we now drop the cumbersome superscript zero notation
and write the resulting equations in the frame which rotates with angular velocity ,,
we obtain equations (17).

APPENDIX C
THE CALCULATION OF THE LARGE-SCALE GALACTIC FLOW

The most fundamental aspect of shocked flows is the existence of a region of super-
sonic flow and a region of subsonic flow. The passage from supersonic flow to a region of
subsonic flow is achieved via a shock. If the streamlines are (nearly) closed, there must
also be a passage from subsonic flow to supersonic flow through a sonic point.

A smooth passage through a sonic point can occur only under special conditions—
e.g., at a “throat” in nozzle flow. As is well known from Parker’s solution for a steady
solar wind (see Parker 1963), the role of a “throat” often appears in a modified form
when external forces are present. From equation (30b), we see that du,/dn remains
finite when #, equals @ only if (2Qu; + g1) is zero. Indeed, for given location (@, n =
nsp) of the sonic point and for given p (i.e., for given @) at the sonic point, a series can
be developed in powers of (7 — ngp) to obtain the solution of the system (30) which is
regular in the neighborhood of the sonic point. The values chosen for ngp and p at the
sonic point can be adjusted later to satisfy the conditions that the flow be doubly
periodic and that the net phase transformation in a complete circuit (actually, in a
180° circuit) around the Galaxy be zero. The extra degree of freedom, the choice of f. (or
F,) at the sonic point, is at our disposal to fit the observations pertaining to the amount
of neutral hydrogen present in the Galaxy.

The values of p and f. at the sonic point carry no special physical significance. We find
it conceptually useful to relate these values to the “average’ values for a streamtube of
average radius @. Using the word “average” loosely, we denote po as the average density
of the intercloud gas, Fo as the average fraction of volume occupied by the clouds, and
relate the conditions at the sonic point through the mass fluxes

(pd) SP = poly , ( fv<p0>a’) SP = ch<Pc>0un0 ’ (Cl)

where u, is given through equation (32a). By using the mass flux to define the various
“average’”’ quantities, we have automatically weighted the “averaging’ process by the
volume; i.e., the averaging is more properly regarded as one over the streamtube than as
one along the streamline. From p,, we further define the “average pressure’” Py through
the equilibrium P-p relation.

Consider now a particular guess for ngp and Py. As outlined above, the sonic point is
a natural point to start the numerical integration of the flow—forward in n to obtain
the supersonic branch, and backward to obtain the subsonic branch. These two branches
are later to be ]omed by a shock; we now describe the procedure for determining the
location of the shock as well as for determining the other characteristics of the flow.
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As we integrate backward along the subsonic branch, the flow is compressional and the
pressure increases steadily. Note, however, that P can never increase to Ppax in subsonic
flow because a? = (9 Peq/dp); is zero at P = Py, and the gradient of #, as given by
equation (30b) would become infinite before Pp.x is actually reached. Thus, if P reaches
or exceeds Prax anywhere in the flow, it can do so only within the shock layer. (This
statement is not true if the flow is entirely supersonic along the whole streamline and
there are no shocks.) If phase transition is present in the shock layer, the postshock
pressure P(2) must be near but slightly less than Pp.x (see eq. [21]). The amount that
P(2) is less than Pnax is, of course, not precisely determined simply because there is
never a clear demarcation between the shock layer and the rest of the flow. We must be
satisfied that our numerical results are not sensitive to the exact choice adopted for P(2)
when phase transitions are present. When phase transitions are absent, the postshock
pressure may have any value less than Pp,x.

To find an acceptable solution in actual practice, we use the following convenient
device. We use the exact P-(p;) relation for the clouds but perform the calculations for
the intercloud medium using the polytropic P-p relation (6) even beyond P = Ppay if
need be. Having obtained the subsonic branch, we perform the supersonic integration by
marching forward from the sonic point using equations (30). We switch to equations
(33) if P tries to decrease below Pnin and back to equations (30) if the flow becomes
compressional (see § IVd). At each step of the supersonic integration we artificially
compute the postshock conditions that would result from the jump conditions (26)
were the gas lo shock at that point. (The value used for 8, is obtained by subtracting
(pa)sp from the local value of pu,.)

The artificial #,(2) = #.(2) computed in this way is plotted for each local value of
ug in the (uy,, ug)-plane together with the results of the subsonic and supersonic integra-
tions (see fig. 5). The intersection of the curve obtained for the jump conditions and that
for the subsonic branch singles out the conditions under which the gas can “shock” in
this scheme. However, in general, the difference in azimuthal angle reached by the super-
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F16. 5.—The procedure used to locate the galactic shocks. See text in Appendix C for explanations.
The labeling used here is consistent with that used in fig. 2.
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sonic flow and that reached by the subsonic flow will not be 180° (for a doubly periodic
solution), nor will P(2) be near P, if phase transitions are present. Such a trial inte-
gration would not constitute an acceptable solution—especially if P(2) is greater than
Prnox. We successively choose different starting values of ngp and P, until both conditions,
double periodicity and P(2) = Ppax, are satisfied. An efficient iteration procedure, based
on a two-dimensional analog of Newton’s method for finding roots, can find in four or
five tries a solution which satisfies both conditions to an accuracy of 1 percent or better.

APPENDIX D
THE LIKELIHOOD OF THE EXISTENCE OF A SONIC POINT

As described in the previous Appendix, the possibility of finding streamline solutions
which contain shocks depends intimately on the existence of a sonic point. For small
relative strengths F of the spiral gravitational field, the velocity component «, cannot be
expected to vary by more than + u, about #,. Thus #, has a chance of reaching a only
if the “unperturbed” velocity u, is, to begin with, not too far from typical values for a.

Since u., is not related to @ in any obvious manner, the condition %, ~ @ (in practice,
uq0 > @) seems at first sight unlikely to be satisfied in general. In fact, direct examination
of figure 6 in Shu et al. (1971) shows #,, (denoted w1 by Shu et al.) to be 10-20 km s~?
over a wide range of radii for three galaxies—M33, M51, and M81—which differ sub-
stantially in kinematic properties.

The explanation rests with the (asymptotic) dispersion relation for (linear) density
waves and with the recognition that u, represents the phase velocity of the wave with
respect to the circular motion of the matter. The ‘“‘short spiral waves,” when sustained
primarily by the disk stars, are exactly those for which this phase velocity is comparable
to (but usually a factor 2-3 smaller than) the stellar rms velocity dispersion {cs?)"/2 in
the radial direction. For a wide class of mass models for normal spirals, gravitational
stability of the galactic disk requires (c»?)/? > 30 km s~ !, whereas, independent of ¢,
thermal stability of the intercloud medium requires @ > 7 km s~*. This set of circum-
stances virtually guarantees #, in normal spiral galaxies to have values which makes
transonic flow a likely condition. (Short spiral waves of small amplitude supported
entirely by the self-gravity of the gas lead to values of #, which are subsonic over the
entire disk. This may represent an important difference between Vandervoort’s 1971
model and ours.)
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