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ABSTRACT

We undertake a semiempirical study of the spiral patterns of three model galaxies constructed from
the observed rotation curves of M33, M51, and M81. Consistent with the proposal that density waves
are initiated in the outer regions of a galaxy, we find a good fit to result for the observed spiral structure
if we choose a pattern speed equal to the rotation speed where the distribution of H 11 regions is seen
to end. The circumferential bands containing the most prominent H 11 regions are located in qualitative
agreement with a mechanism in which star formation is triggered by spiral galactic shocks. A suggestion
is mgde for MS51 for the coexistence of short and long trailing waves traveling with the same pattern
speed.

I. INTRODUCTION

The winding dilemma associated with spiral tubes of matter in a field of differential
rotation has led many workers, starting with B. Lindblad (1963 and earlier papers),
to regard the principal arms of a spiral galaxy as the compression zones of a density
wave. Indeed, recent studies (see review by Lin 1970) show that several large-scale
observable features in our own Galaxy receive a comprehensive explanation in terms of a
density wave that has a quasi-stationary spiral structure.

a) Objectives of the Present Paper

Several workers (Toomre 1969; Kalnajs 1970; Lin 1970; Lynden-Bell 1970; Miller,
Prendergast, and Quirk 1970; Contopoulos 1970; Shu 1970a, b, hereinafter called Papers
I and IJ, respectively) have commented recently on the possible origin and development
of extensive spiral structure in normal spiral galaxies. Whether or not one adheres to
any of their views, the theory of density waves, with the pattern speed Q, regarded as a
free parameter, can help greatly in interpreting observations of external galaxies. In
this spirit, we have included a sufficiently detailed account of the computational tech-
niques to allow the application of the theory as a working tool.

b) Test of Lin’s Proposal

As an illustration of this application, we adopt a semiempirical approach to test one
aspect of Lin’s (1970) proposal. Our approach is semiempirical in that we have not
included the effects of boundary conditions in what may be regarded as a difficult and
perhaps nonlinear eigenvalue problem; instead, we have determined the one crucial
parameter of the theory @, by the following line of reasoning.

If Lin is correct and density waves are initiated by gravitational clumping in the
outer regions of spiral galaxies (see also Goldreich and Lynden-Bell 1965; Julian and
Toomre 1966), then the resulting pattern speed is approximately equal to the rotation
speed of the outermost H 11 region (Paper II). The corotation radius lies slightly outside
the outermost H 11 region if star formation is initiated only by the mechanism of spiral
galactic shocks (W. W. Roberts 1969), but it coincides with the H 11 region if the clump-
ing of interstellar gas itself leads to star formation.

The spiral pattern associated with our own Galaxy appears to satisfy the above
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criterion (cf. Lin, Yuan, and Shu 1969). It is of interest to see whether the criterion is
satisfied by external galaxies as well.

The test, then, is whether a theoretical pattern computed with a pattern speed esti-
mated from the determination of the corotation radius provides a good fit to the ob-
served spiral structure in the interior. This test is meaningful because the calculation
of a spiral pattern is sensitive to the determination of the pattern speed but not to the
details of the equilibrium model adopted (cf. § VI).

The normal spiral galaxies M33, M51, and M81 are selected for a first study because
(@) the two-armed “grand design” of each galaxy is easily recognizable and (b) the
kinematics of rotation of these galaxies span the familiar range from nearly solid-body
rotation (M33) to nearly constant rotational velocity (M51 and M81). M51 is addi-
tionally interesting because one of its main spiral arms appears ‘“aimed” at a close
companion, NGC 5195. Thus, M51 provides an oft-quoted example in which close
galactic companions may play an important role either in exciting or in disrupting
spiral structure (cf. Pfleiderer 1963; Arp 1969; Toomre 1969; Toomre and Toomre
1970; see also § IVe).

II. CONSTRUCTION OF EQUILIBRIUM MODELS

Before we can compute the properties of the spiral density waves which propagate
in a galaxy, we must first construct an equilibrium model. For simplicity, we shall con-
sider only the stars; the inclusion of a small amount of gas (~10 percent) would not
significantly modify our spiral-pattern determinations (Shu 1968). For our present
purposes, then, we require self-consistent models of stellar disks which give not only the
distribution of mass but also the distribution of velocities.

a) Mass Models

Methods for constructing static axisymmetric mass models of galaxies from observed
rotation curves are well known (Schmidt 1956, 1965; Burbidge, Burbidge, and Prender-
gast 1959; Brandt 1960; Toomre 1963). In our studies, we represent the disk population
by one of Toomre’s flat models and the central bulge (if any) by one or more inhomo-
geneous spheroids. (See Appendix for details.) The distance D used to convert angular
positions to radii from the center of the galaxy is listed in Table 1. The precise deter-
mination of this quantity is, fortunately, not essential for the comparison of the theoreti-
cally derived pattern with the observed spiral structure since the computed pattern
scales with the linear size adopted for the galaxy (see also § V).

b) Distribution of Peculiar Velocities and Thickness of the Disk
Given a mass model, the formalism used by Shu (1969) for completely flat disks is
extended (along lines similar to that of Vandervoort 1970a) to compute the velocity
distribution for a galaxy of finite but small thickness. The resulting model has at each
TABLE 1

INTEGRAL PROPERTIES OF THE GALAXIES M33, M51, AND M81

D M J* Ex*

Galaxy Type (Mpc) (1010 M) (Mg kpe km sec™?) (M@ km? sec™?) EJ2/G*Ms Mu./M
(1) (2) (3 (4) (%) (6) ) (8)
M33... Sc 0.794 1.66 7.84X 102 —6.69x101 —0.177 0.12
MS51... Sc 4.00 1.96 6.89X1012 —1.99X 10 —0.178 0.042
M81... Sb 2.63 12.3 1.64X 104 —3.44X10% —0.175 0.012

* Computed as if the disk were completely flat and in centrifugal equilibrium.
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point a (modified) Schwarzschild distribution of peculiar velocities. Such a stellar disk
has a mass distribution which varies in the vertical direction as sech? (z/20). The parame-
ter zo(@) is the local scale height and is given in terms of the mean-square peculiar

velocity {(c;?) b
y {ex') by %0 = (c2)/7Gos , (1)

where oy is the local surface density.

¢) The Velocity Dispersions

The velocity dispersions in the (modified) Schwarzschild distribution cannot be chosen
arbitrarily but must satisfy the dynamical constraints of equilibrium and stability.
Thus, the velocity dispersion (cs?)/? relative to{c«?)'/? is given by Lindblad’s (1959) theory
of small epicyclic motions. If we write x and Q for the rotational and epicyclic frequencies,

Lindblad’s theory gives
()2 /(ca? = &/20, (2a)
K = 40 + 2dQ?/dw . (2b)

On the other hand, the ratio Zy = (¢.?)'/?/(cs*"/2 probably has the value unity in the
central regions of spiral galaxies where a well-mixed state of equilibrium (Jeans 1922)
can be expected to prevail. In the outer regions of a thin-disk galaxy, the decoupling
of the motion perpendicular to the plane from those parallel to it (which depends on
existence of a “third integral’’) can lead to values of Zy substantially less than unity
(e.g., Zy = 0.5-0.6 in the solar neighborhood). In our models, Zy decreases monotoni-
cally from unity at the galactic center to 0.5 at the outermost regions. The choice of the
rate of decrease is arbitrary; fortunately, the computed spiral pattern is insensitive to
this choice.

It remains, thus, to specify (cs?)!/? as a function of radius. The minimum value
(cw)min'/? is obtained by requiring that the stellar disk be stable against the Jeans in-
stability for the rotating disk (cf. Toomre 1964, Fig. 5, for the case of a stellar disk of
infinitesimal thickness). We have plotted in Figure 1 the results of extending Toomre’s
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Fic. 1,—Criterion of marginal stability as a function of the dimensionless disk thickness &tz
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criterion to a stellar disk with given (local) thickness z,. The results are most compactly
stated in the dimensionless form where kr{ce®min!/2/k and {(c,)2/{ca®)min'/? are plotted
as a function of krz, The parameter kr is the natural inverse-length scale associated
with the rotation of a thin disk (Toomre 1964):

kr = «2/27Goy . 3)

As an illustration of the utility of Figure 1, suppose the solar neighborhood to possess
just the minimum level of {cs?)!/? consistent with stability. Following Schmidt (1965),
we adopt the value x = 32 km sec™! kpc~'. We also adopt as reasonable estimates
o0 = 90 My pc—2and 3o = 300 pc. These two estimates correspond to a volume density in
the central plane equal to g¢/220 = 0.15 M pc™?, i.e., Oort’s (1965) limit. Using equa-
tion (3), we compute kr = 0.421 kpc~! and krzo = 0.126. From Figure 1, we now obtain
(cD)V2/{ca®)!/? = 0.60 and {ca®)!/? = 0.42 (x/kr) = 32 km sec™. The last two values are
in good agreement with observations (cf. Delhaye 1965; see also Vandervoort 1970c¢
for a treatment more elaborate than ours). A more realistic estimate, based on approxi-
mately 10 percent of the local surface density being in the form of interstellar gas with
an “effective sonic speed” ¢ = 8 km sec™! would raise our estimate of {ca®)min'/? by
about 3 km sec™! (Shu 1968).

The apparent coincidence between the velocity dispersion actually present in the
solar neighborhood and the minimum required for stability reinforces our conviction
that the stability index Q = (cw®!?/(¢ca®)min!/? is likely to have a value near unity
throughout the interior of the disk, except possibly for the very central regions (cf.
Shu 1969; see also Toomre 1964). For this reason and for simplicity, we adopt Q = 1
throughout the disk of our models.

III. LOCAL PROPERTIES OF SPIRAL DENSITY WAVES

The dispersion relation for spiral density waves has been derived in the WKB]J ap-
proximation for stellar disks of infinitesimal thickness by Lin (1966) and Lin and Shu
(1966). The extension of this analysis to disks of finite thickness was undertaken by
Shu (1968) and by Vandervoort (19706). A second-order analysis giving the variation
of the amplitude of the wave for a disk of infinitesimal thickness was considered in
Paper II. In what follows, we shall use the notation of Paper II to put the results of
these investigations in a form useful for our studies.

a) Dispersion Relation

For a stellar disk which possesses a (modified) Schwarzschild distribution of peculiar
velocities, the dispersion relation giving the local wavenumber 2 = ®'(w), for given
wave frequency w, takes the form (Shu 1968; Vandervoort 19705):

I—k]:—l (11— =53, (4a)

» = (0 — mQ)/k = m(Q, — Q) /x, (4b)

with m = 2 for two-armed spirals.

The functions &, and J are, respectively, the “reduction factors” due to the effects of
velocity dispersion in the galactic plane and in the vertical direction. (For the functional
form of §,, see Lin et al. 1969.) In what follows, we use the form

1

=1+|k|zo’ (5)

J

which is the ‘“crude” approximation of Vandervoort (1970b). Numerically, it differs
little from the “reduction factor due to thickness” introduced by Shu (1968). For z, =
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0, 3 = 1, and the dispersion relation (4a) reduces to that given by Lin and Shu (1966)
for a flat stellar disk.

The dispersion relation (4a) leads formally to an interesting degeneracy. For a given
frequency w and angular symmetry m, waves of two different scales arise because of the
different roles played by rotation and “pressure’ in opposing the force of self-gravity
(Paper II, Fig. 1). Indeed, Lin’s (1970) proposal for the origin of spiral structure relies
on a coherent superposition of inwardly propagating short waves and outwardly prop-
agating long waves to maintain a two-armed trailing spiral mode.

The existence of the long waves is speculative since the assumptions underlying the
WKB]J approximation (e.g., the neglect of azimuthal forces for nonaxisymmetric dis-
turbances) break down for very long waves. Pending further theoretical analysis, we
consider the existence of long waves only as an interesting working hypothesis.

b) Amplitude of the Wave

For a disk of infinitesimal thickness, the variation with radius of the amplitude of
the wave has been derived in Paper II (see also Toomre 1969). There has as yet been no
rigorous extension of this second-order WKB]J analysis for a disk of finite thickness. A
heuristic and qualitatively correct result is given below. Call g = (go? + go?)/? the
mass-weighted average of the amplitude of the spiral gravitational field and express
it as a fraction F of the mean gravitational field #Q?; then

F = g/o® = constant X (k2o + m?)?|a®,|™12/aQ?, (6a)
ol
(Rv = [_ 1 + F) lnnk (EFVJ)] . (6b)

It is easy to verify that these equations reduce to the correct limit for vanishing disk
thickness (cf. eq. [59] of Paper II).

The amplitude relation given above implies that the action density @, the energy
density § = w@®, and the angular-momentum density § = mQ of the wave are positive
for the outer regions of a galaxy where @ < @, but negative for the inner regions where
Q > Q, (cf. Toomre 1969; Paper II). Thus, provided that wave energy can be exchanged
across the corotation circle @ = Q,, and provided that the global wave energy is zero,
the square of the wave amplitude (which is locally proportional to @) can grow spon-
taneously without violating the global conservation of energy and angular momentum
(Kalnajs 1970). If the corotation circle is located sufficiently inward (i.e., if @, is suf-
ficiently high), sufficient material may exist beyond the corotation circle to allow the
outer regions to play as important a dynamical role as the inner regions. In this case,
the overstability mechanism of Kalnajs may lead to the spontaneous excitation of
spiral density waves. From our analysis (§§ IVa, V, VI), this is a definite possibility
for M33.

¢) Numerical Reliability of the WK BJ A pproximation

For the WKB]J approximation to be applicable, the parameters

1 dln@®,

"N 71 = —_— —_— 2 2 me2
e dnal’ o= expl (8 — ou)¥/2ea%], (7)

o= (|kl®)™, &= '

must be small compared with unity. In the above, @y, is the radius of a Lindblad res-
onance ring (if one exists) and ¢ is the dimensionless parameter (ca?)'/?/wx.

The requirement 8; << 1 is the general condition for the validity of the asymptotic
expansion. Clearly, this requirement cannot be satisfied (@) if the waves reach the central
regions so that o is small or (8) if the waves are very long so that || is small. The
criterion 8, << 1 guarantees the coefficients of the terms of O(5;) in the asymptotic
expansion to be small in comparison with those of O(1) (more specifically, that the mag-
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nitude of the second term in the brackets of eq. [11] in Paper II [generalized to incorpo-
rate the effects of finite thickness] be small compared with the first). This criterion is
violated, for example, near the corotation radius where the amplitude of the self-con-
sistent spiral gravitational field is no longer slowly varying in comparison with the
phase. The condition §; << 1 breaks down when we are within a distance O(ew) of a
Lindblad resonance (Paper II, eq. [42]).

For definiteness, we adopt the following practical criteria for numerical reliability:

b1, &, 8 <03. (8)

In practice, the parameters 8y, ds, 85 are usually much smaller than 0.3 throughout most
of the range of the computed pattern for short waves.

d) Rate of Star Formation

According to the shock calculations of W. W. Roberts (1969), the degree of gas
compression, along a streamline of average radius @, depends on four parameters:
a, k, Q,, and F. If the two-component model of the interstellar medium (Field, Gold-
smith, and Habing 1969; Spitzer and Scott 1969) is adopted, @ is unlikely to be very
different from the sound speed associated with the intercloud phase (~7-12 km sec™?
for a wide range of densities).!

The dependence of the solution for the gas flow on 2 and Q, is essentially through the

combination
wi = mos(Q — Q)/ (ke + m?)1? 9)

which represents the component of the unperturbed gas velocity perpendicular to the
wave front. If w.y ~ @, the maximum compression felt by the gas may be greatly en-
hanced by the development of galactic shocks induced by the presence of the spiral
gravitational field. The degree of enhancement depends on the magnitude of F.

IV. RESULTS
a) Rotation Curves and Equilibrium Models

The curves marked @Q in Figures 2a, 25, and 2¢ represent our fits of the observational
data on rotation curves for M33, M51, and M81 (see Appendix for details). Our model
for M33 is nearly in solid-body rotation for much of the interior of the disk, whereas
our models for M51 and M81 show considerable differential rotation. Apart from size,
the main difference between MS51 and M81 seems to be the amounts of matter in gas
relative to that in stars (see Table 1). The solid and dotted curves in Figure 25 give two
examples of plausible fits for the observational data on M51. We adopt the solid curve
for pattern calculations and use the dotted curve to illustrate the errors which arise
from observational uncertainties.

The curves marked ¢ in Figures 2e¢ and 2b show the surface densities corresponding
to our fits of the rotation curves for M33 and M81. The corresponding curves for the
two models of M51 are shown separately in Figure 2d. In contrast with the distribution
of mass in M33, those in M51 and M81 are sharply peaked toward the galactic center.
The smooth distribution for M33 seems to be in accord with the distribution of Popula-
tion IT and old Population I stars indicated by the composite photograph of Walker
(Lequeux 1969, Plate X).

Figure 3 shows for M33 the adopted dispersion velocities and scale height z, as func-
tions of distance from the galactic center. The disk thickness 2, is different from that
adopted originally to compute the rotation curve in Figure 2a. In principle, we should
adjust that rotation curve if we retain the same projected mass density o. However,

1 In Roberts’s calculations, a represents the turbulent dispersion speed of the gas = speed of random
motions of the interstellar clouds ~10 km sec™.
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F16. 3.—The dispersion velocities and scale height adopted for M33. The dispersion velocities are
calculated on the assumption that the level of dispersion present is barely sufficient for the suppression
of the Jeans instability. The scale height 2, is associated with the balance between the gravitational
potential and the random motions in the vertical direction.

since the adjustment required is O(z0®/@?) and is negligible everywhere except in the
very central regions, we ignore the slight modifications required. The dispersion veloc-
ities and scale heights for M51 and M81 are computed in a similar fashion but are not
displayed here. ‘

b) Determination of Paitern Speeds

Figures 4a, 4b, and 4¢ show the run of the rotation parameters 2, x, @ + 3. Two-
armed spiral waves can propagate only in the range where a horizontal line drawn at
height Q,, lies above @ — 3« and below @ + 3«x. However, if Lin (1970) is correct, only
the region where @ — 3k < Q, < Q shows an organized spiral pattern.

The location of the outermost H 11 region in our algorithm gives the corotation radius,
i.e., where @ = Q,,. This determines @, to be given approximately by 16 km sec™! kpc™!
for M33 and 21.5 km sec™! kpc~! for M81—corresponding to corotation at 6.8 and 11.2
kpc, respectively. In view of the likely disruption of the outermost parts of M51 by the
companion NGC 5195, this method may not give a reliable estimate of the corotation
radius of MS51. Under these circumstances, we arbitrarily adopt 2, = 33 km sec™! kpc™?
(corresponding to corotation at 4.5 kpc) as a value considered not inconsistent with
Lin’s proposal.

Because Q is fairly constant over the disk of M33, the curve @ — %« is very flat. Hence,
ingoing spiral waves excited with a pattern speed of 16 km sec™! kpc—! can penetrate
into the very center of the galaxy. This can be expected to be a general feature of
galaxies which possess no prominent concentrations of mass toeward the galactic center.
In contrast, for our choices of the pattern speeds, the ingoing spiral waves in M51 and
M81 would encounter barriers provided by the existence of inner Lindblad resonances.

Related to the previous comment is a dynamical tendency for galaxies like M33 to
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to the mass models for M33, M51, and M81.
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have more open spiral arms. The waves in such galaxies are likely to be everywhere
far from (Lindblad) resonance with the consequence that the dispersion relation will
never give very short wavelength scales for the self-sustained waves.

¢) Spiral Patterns

The solid curves of Figures Sa, 5b, and 5S¢ (Plates 1, 2, and 3) show the spiral patterns
computed for the short waves as an overlay, when properly scaled and tilted, on the
photographs of M33, M51, and M81 contained in The Hubble Atlas of Galaxies (Sandage
1961). The computed patterns seem to give satisfactory fits for the primary spiral
features observed in these galaxies. In particular, the waves in M33 can propagate into
the galactic center and result in a barlike structure there, whereas in M51 and M81
they end as an increasingly tighter spiral around the inner Lindblad resonance ring.?
We caution, however, that our analysis is incomplete since conditions near resonances
and at the boundaries are not adequately treated. Note also the two-headed horizontal
arrows in Figures 6a, 6b, and 6¢ which give the ranges over which the pattern calcula-
tions are considered numerically reliable.

d) Rates of Star Formation

Plotted in Figures 6a, 6b, and 6¢ as functions of @ are F and w., (see egs. [6a] and [9])
associated with the short spiral waves in M33, M51, and M81. Reference to the shock
calculations of W. W. Roberts (1969) for our own Galaxy would lead us to expect a
noticeable decrease, for @ > 3 kpc in M33, in the rate of star formation by the mech-
anism of triggering by spiral galactic shocks. This occurs because both F and w.o de-
crease rapidly as one goes outward from 3 kpc. This conclusion is in qualitative agree-
ment with our visual impression of the observed spiral structure in M33.

In contrast, we would expect significant star formation to extend relatively farther
out toward the corotation radius in M51 and M81, because w.o maintains a value con-
sistently closer to the assumed gaseous sonic speed a (~7-12 km sec™?!). This expectation
is borne out by M51 but not by M81. We conclude that appreciable star formation
extends only to ~6 kpc in M81 because of the overall deficiency in interstellar gas.
Thus, greater gas compression may be required intrinsically to trigger star formation
in M81 today.

e) Additional Comments on M51

i) Disruption by NGC 5195

Toomre and Toomre (1970; see also Pfleiderer 1963) have shown the outermost
portions of a disk galaxy to suffer impressive gravitational disruptions (with the for-
mation of transient “intergalactic bridges” and “‘counter-jets”) during the close passage
of another galaxy. The disruption is very considerable unless the orbit of the companion
either has a high inclination with respect to the principal plane of the target galaxy or is
in a retrograde sense with respect to the rotation of the target galaxy.? The difference of

2 Indeed, our adoption of the particular model for M81 was influenced by the location of an apparently
circular arc of dust marking a radius ~1.7 kpc.

3 In this regard we remark that while Toomre’s calculations refer to material particles, there is little
distinction between density waves and and material arms near the corotation circle.

F16. 6.—The unperturbed velocity components wio and the relative amplitudes F of the spiral gravi-
tational field: (a) for short waves propagating with @, = 16 km sec™! kpc™! in M33, (b) for short waves
propagating with Q, = 33 km sec™ kpc™ in M51, (¢) for short waves propagating with Q, = 21.5 km
sec! kpc™ in M81, and (d) for long waves propagating with 2, = 33 km sec™! kpc™ in M51. The right-
hand borders of the abscissa correspond to the corotation radii. The horizontal two-headed arrows indicate
the ranges over which the calculations are considered numerically reliable. The absolute scales for F are
arbitrary, but in (d) they can be compared relative to those in (b) provided that total reflection of short
waves into long waves (and vice versa) occurs.
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