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ABSTRACT

The properties of galactic density waves are studied in the WKB] approximation. In the lowest order
of approximation, we reproduce the dispersion relation reported by Lin and Shu in an earlier communi-
cation. In the next order, we demonstrate explicitly that the density of “wave action” is transported with
the group velocity derived by Toomre. Some general implications are drawn for mechanisms proposed
for the origin of spiral structure.

I. INTRODUCTION

In the previous paper (Shu 1970, hereinafter called Paper I), we developed an exact
formulation for the linear gravitational oscillations which can occur in the plane of a
stellar disk with infinitesimal thickness. Studied here are the properties of oscillations
whose asscciated wavelengths are small compared with the radial dimensions of the
disk. Such density waves allow a relatively complete treatment in the WKB] approxima-
tion (Lin and Shu 1964, 1966).

For mathematical convenience, leading and trailing waves are treated separately.
Boundary conditions and stellar resonances are recognized to play an important role in
the decision as to whether leading and trailing waves need eventually to be superimposed
(Paper I); the detailed consideration of these effects will be left for a future investigation.

II. THE SURFACE DENSITY REQUIRED TO SUPPORT A SPIRAL GRAVITATIONAL FIELD

It is useful to consider the dynamical response separately from the gravitational
potential calculation. Thus, we begin by finding from Poisson’s equation the surface
density required to support a spiral gravitational field.

We adopt an inertial frame referred to cylindrical coordinates (@, 6, z), with 2 = 0
defining the plane of the galaxy and @ = O defining the center. We assume, with Lin
and Shu (1964), that in the plane of a galactic disk modeled with infinitesimal thickness
there exists a perturbation of the gravitational potential of the form

Bi(w, 0,2 = 0,8 = V(w)ei ™. (1)
We note that this potential is of spiral form with short arm spacing if
V(e) = A(®)ei*®@ with A(w) and &(a) real, 2

and if the variation of the phase ®(®) is rapid compared with that of the amplitude
A(m).! In practice, we require |@®'(w)| >> 1. With the convention that m is a nonnega-
tive integer (its value gives the number of spiral “‘arms”), the spiral pattern leads if
k = ®(wm) > 0 and trails if £ < 0.

The gravitational potential Bi(w, 0, 2, t) = V(w, 2) exp [¢(wt — m0)] can be supported

1 The restriction that the rapidly varying part of V() be confined to its phase prevents us from con-
sidering overstable modes of the type discussed by Hunter (1969).

99

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...160...99S

9T T TI60. 2. 095!

P

(IR0

100 FRANK H. SHU Vol. 160

by the surface density o1(®, 0, t) = S(@) exp [i(w? — mf)], provided Poisson’s equation
is satisfied. This requires ’
(&412

2 2
e + o + % — -';%] V(®, 2) = 4nGS(®)8(2) , 3)

where 8(z) is the Dirac é-function. We wish to solve for S(a), correct to two orders in the
small parameter |kw|~), when V(@, 2) is given in the plane z = 0 by equation (2).

Integration of equation (3) across the galactic plane shows that S(@) can be obtained
from the jump condition

@ =g 5 @9 - @)

2e=0—

From the reflection symmetry of the problem, V (@, z) must depend only on the absolute
value of z. Further, we multiply V by @!/? to emphasize the cylindrical geometry and
write : ,

W(m, |z]) = aV(®, 5) . )

After some manipulation, equations (3) and (4) take the forms

PW W _m =
o 9|32 o

1 3 )
VIW=0 for [z| >0, (6a)

S@ =S {ag @ e, (6b)

Equation (6a) is to be solved under the boundary cenditions '
W(w, 0) = o524 (w5)e?®@ | (7a)
W(w,0)—0 as |z| > = . (7b)

Only the disk part of the galaxy where |k|@>> 1 will be studied; in this region the
curvature term (m? — })W/a? is of order (kw)~2 smaller than the first two terms in
equation (6a). Thus, equation (6a), correct to two orders in the WKB] approximation,
is simply Laplace’s equation in rectangular coordinates for two dimensions:

i 4 il 4
| W-FW:‘O . for |[z| >0, (8)
which is to be solved under the boundary conditions (7). :

In this approximation, the continuation of W(®, |z|) from |z| = 0 into the region
[z] > 0 is trivial when the theory of complex variables is used. We simply replace @ in
the argument of W(w, 0) by & + ©|3| to obtain W(w, |2|). The correct choice of sign in
@ + 1|z| is dictated by the boundary condition at infinity. Consistent with the adopted
approximation, we may replace that condition, given through equation (7b), by the re-
striction that for small |z| the magnitude of W(w, |2|) falls from its value in the plane
|z] = 0. If @+ ip|z| with p = +1 gives the correct choice of sign and if the phase
®(w) is a rapidly varying function, this condition can be interpreted with the aid of
equation (7a) to imply '

Im {&8(s + ipls])} >0 ~ for |z|>0.
Expanding (@ + ip|z|) for very small |z]| leads to the requirement
p = +1 = sign {®(a)} = sign {k}. 9
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The solution to equation (8), corresponding to the choice of sign (9) and subject to
the boundary condition (7a), can now be written

W(w, |z]) = (& + ip|z])2A(w + ip|z])e*@irleD . (10)

The surface density required to support the spiral gravitational potential is obtained
from equations (6b) and (10) as
1% V(@) 4o dln
27G 1~ 57l @, (1D
an expression which contains two orders of the approximation for large |k|®. In the low-
est order of approximation, equation (11) reproduces the result obtained by Lin and
Shu (1964) in which surface-density maxima correspond with potential minima.

S(w) =

II1. THE RESPONSE OF THE STARS

Consider the dynamical response of a stellar disk (of infinitesimal thickness) to forcing
from an oscillating gravitational potential of the form given by equation (1). In Paper I,
the perturbation in the distribution function of stars was shown to have the form

oF .
h= (3 V1) e, (12)

where f is given by equation (22b) of that work:

wdFo/dEy + moF,/dJ S ——
TR CT——T S Vi, (r))e dr . (13)

“Ti2

f(G’, E,, J) = -

In the above Fy(Ey, J) is the distribution function in the basic state. It is assumed to
be zero when a star’s energy (per unit mass) E, is positive or when its angular momentum
(per unit mass) J is negative. These assumptions are made to restrict the disk to contain
only stars which are bound and which rotate in a given sense.

The other parameters in equation (13) are defined so that 27y3(Ey, J) is the radial
period of oscillation of stars with energy E, and angular momentum J, and 2612(E,, J) is
the azimuthal angle traversed in time 27,5. The variables @, (7) and 0,(7) describe, as
functions of the time 7, the unperturbed orbit of such a star when its position at 7 =
+ 71218 (@, +012):

%‘% = Iy(®,, Fo, J) with o, =@ at = Frp9, (143«)
do, J .
iy with 0, = +6, at 7= +75. (14b)

In equation (14a), y(w,, Eo, J) is the radial velocity of the star. The functional de-
pendence of I, on its arguments is given by

o(w, Eo, J) = {2[E, — Bo(w)] — J*/a?}12, (15)

and B, refers to the steady axisymmetric gravitational potential which characterizes the
basic state. The dependence of @, and 6, on (@, Eo, J) has been deliberately suppressed.

a) The Modified Schwarzschild Distribution

For the basic distribution of the disk stars we adopt a model which simulates many
of the observed features in our own Galaxy. This model, the “modified Schwarzschild
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distribution,” has been described by Shu (1969):

T = ;Po(") exp [—8&/c’()], & < —E(), r>0;

Fo(Eo, J) = 0, otherwise .

(16)

The form of the functions Py(r) and co(r) can be chosen to match any reasonable varia-
tions, with distance from the galactic center, of the basic stellar surface density o, and
the rms velocity dispersion in the radial direction {pa?)!/2. The “epicyclic integrals,”
and &, are defined as those functions of J and E, which satisfy the relations

Q) =J, & =EFEy— EJr), E\r) = 3r%@0)+ Bo(r), 17
where Q(za) > 0 is the circular frequency whose variation with respect to its argument

is defined in terms of the basic gravitational potential:

a(a) = 22 (@) (19)

We may think of equation (16) as giving a parametric representation of the basic
distribution function in terms of (@, ¢a, csy) when the peculiar velocities (ca, ¢s) are defined
through the relations

2 .

Go= {28 — &, DV, 6 = = Q0) — a0(@), (19

and when &.(r, ®) is given by |
20)2 2
8.7, ) = Bo(@) — Bol) + "2 (2 — 1), (20)
In the transformation (E,, J) — (§, r), the partial derivatives transform as follows:

a _ _@_ K 29(r) _9_ _ 9

OE, 98’ 6] = 7 (r) or 2 () a8’ (21)

Here, « is the epicyclic frequency defined in terms of the circular frequency through

dln @
2 = 402 1
(@) = 4@ {1+ 3 ot (22)
In what follows, we suppose that the dimensionless parameter
o) = 20 (23)

rx(r)

is small compared with unity. This assumption is equivalent to regarding the local
dispersion speeds as being small compared with the circular velocity and is a condition
which is likely to be satisfied in the disk parts of spiral galaxies.

To two orders of approximation in e, one of the terms in equation (13) can be seen
with the aid of equations (16) and (21) to have the form

QE‘) aFo = (r K(”)
Yot ™ " 2w

where v is the frequency of the wave, expressed in units of the epicyclic frequency, viewed
relative to the circular motion of the stars:

w — mQ(r)
V(f) = ——'—K(;)—"'— .

Vo(8, 1) (24)

(25)
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In the same apprdximation the rms velocity dispersion is given by

. (ca? )H2(r) = co(r) , (26)
whereas the basic distribution has the form (see Shu 1969, eq. [33])

_200) o)
k(r) 2wm,(ca?)(r)
To derive equation (27) in its present form, it has been assumed that all the stars

have the same mass m,. We have also defined the ‘“eccentricity” of the stellar motion
e—not to be confused with e(r) appearing in equation (23)—as the dimensionless variable

_ V(¢g) (28)

re(r) -~

¥

exp [—e?/2e%(r)] . 27

€

b) Response to Forcing from a Spiral Gravitational Field

To compute the response of the distribution function (27) to an imposed spiral gravi-
tational field (2), we adopt the hypothesis that e and |kw|~! are of the same order of
smallness (about 0.1 and 0.06 for application to the solar neighborhood). To compute
the surface-density response to two orders in this asymptotic approximation, we require
all formulae to be accurate to two orders in ¢ or in |k®@|~1. An exception is the relation
giving the radial orbit @,(7) from equation (14a) for which we need accuracy to three
orders in . (T'wo orders in e represent the usual epicyclic approximation.) This exception
is required to establish the rapid phase variation of V(m,(7)) in equation (13) correctly
to two orders.

1) Stellar Orbits

For small e, only the part of velocity space that corresponds to e < &(r) contains a
significant fraction of the stars in the distribution function (27). Hence, in the determina-
tion of the stellar orbit defined by equations (14) we need only find expressions which
are correct to the corresponding number of orders in .

A systematic expansion giving the stellar orbits in this manner may be obtained by
using the parametric representation introduced in the Appendix of the paper by Shu
(1969). In this representation, one radial period 27,2 corresponds to a change of 27 in
the radial phase coordinate ¢ defined through the relation

Ho(G’,, Eo, ]) = fK(f)e sin b . (29)
If the dimensionless time variable
s = k()7 (30)

is introduced, the parametric representation of the required orbit may be obtained by
expansion of equations (14) to yield

s — 5o =.¢ — 2Bs(r)e sin ¢ ; (31a)

wL =14 ecos ¢+ As(r)é cos? ¢, (31b)

6, — 0, = 8(r) [ + 24:(r)e sin ¢] . (31¢)
k(r)
The coefficients 4, and B, are given by
dl

40 = 1+355], B =1 - 40, (32
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and the phase constants so and 6, are chosen so that s = —x, 6, = —[Q(r)/x(r)]x when
@, = @ (see eq. [14] and the discussion below).

To two orders in ¢, equations (31) imply that s and «(r)6,/Q(r) vary by 2z when ¢
varies by 2w; therefore, the radial period of oscillation and the azimuthal angle traversed

in that time are given by
2r Q(r)
21 = —=, 20 33
T T (39)

It is convenient to express all quantities in terms of (@, &, 7, 5), where £ and 7 are de-
fined as . , :

, E=¢sins, 7 =¢€COSS. (34)
In particular, by eliminating ¢ in equations (31), we may now manipulate the required
orbit relations to read

—at-R-R), 6.=22[s—2(3+e)], 9

where the functions R; and R, are given by
Ri=9(1+coss) +¢sins, Ry= By(®)Re® — 1+ 2By(w)lnRy.  (36)

ii) Surface Density Response

We choose to use the variables £ and 7 in place of the momenta variables (pm, 25). The
Jacobian of the transformation (pm, po) = (£, 1), correct to two orders in ¢, works out to

be
3(pay po) | _ r(r)
2 | 2e90)° G
In the right-hand side of the above and in what follows, we regard r as being given in
terms of @ and » by
r=o(l-—m7x. (38)

In the desired approximation the element of mass distribution of stars in the basic
state may be characterized as
£+ nz] dédn

mYodpadps = — a.(r) exp [ 220 | 22e(n) °

The range of integration of both £ and 5 can be taken to extend from — e to +.In
the process, errors are introduced which are only exponentially small.

The response in the surface density is obtained by multiplying ¥, in equation (12) by
m, and integrating over all velocities (pw, po/w). The amplitude of the perturbation sur-
face density then reads

v dikdn 0, (1) g4+
$.@ =SS 2oty Flec P [_ W] % ~Ve

(39)

(40)
v(r 1
sin »()w 21 _}

_|_

fV(w )ew(r)s[l + mZQ(akl

> T E)]de

Particle resonance, arising from corotation and corresponding to »(r) = 0, does not occur
in this approximation. Only for those stars whose angular momentum is such that

»(r) = , +2,.
does resonance occur.?

2 Kalnajs (1965) has given the physical interpretation of these resonances for axisymmetric dis-
turbances in the absence of self-gravitation. Such “free modes” can oscillate only at the fundamental
frequency w = *« and its overtones w = +2«, £3x,....
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The existence of such resonances is also related to the possibility for Landau damping.

It is easily shown that such damping for self-sustained density waves is exponentially

small for all radii which are not within a fractional distance ¢ of a resonance ring @ =
®;, where

V(wj)=j’ jg= =1, £2,.... (41)

For @ # m;, the contribution in equation (40) at the (simple) pole r = @; is proportional
to the term

e—ﬂ’/2e’ - e-—(ﬂ-—mj)'/h’“” (42)
a conclusion which is arrived at independent of the assumption of small wavelength
scale (Q.E.D.).

For application to spiral structure, only the principal Lindblad resonances v = +1
need be considered. In the immediate neighborhood of such Lindblad resonance rings,
appreciable absorption of the density wave can occur (accompanied, presumably, by
conversion of wave energy into random stellar motions). For the present analysis, we
confine our attention to the range of @ which lie well within the two extreme values of @
given by (@_1, @41). This region is referred to by Lin and Shu (1966) as the principal
range; inside it the effects of resonances can be neglected.

Now suppose the functional form of V(w,) is given by equation (2) and @, is given by
equation (35). We expand the potential V(w,) under the assumption that |k|® is a
parameter of largeness comparable to €. In this approximation,

dln 4 . Rfdlnk
Rigne T %o lenw—Rz)]’

We substitute equation (43) into equation (40) and expand about r = @, using equation
(38), to obtain

Su@) = — 2@V@ A, Oy Glenf. @

e2(w) o?k2 (o) sin v(@) T

We have borrowed the Dirac bra-ket notation to mean the integral operation

&) = 5= S a5 S S hgdidn, (45)

V(w,) = V(m)e""“"*x[ 1— (43)

and we have written

_ eiv(w)a—ikGRl . gz + 172
&= g o |~ =] (16)

C= — din [, v g)—-RldllnA-l-' 29 6R1+£)

with

"3 1n & \&&: sin v >’ dlnw

dln (bw) Redlnk
ihw +_dlnw—R2]

(47)
+ ikw[ —nRy

Since differentiation with respect to In @ commutes with the bra-ket operation, we
easily verify the relation

dl . dln A
<G[gv> = <77Igl’> d lnnw (chg Sl; T (ﬂlgv>) <R1|gv d lllll @
+im B[00 0> + le)] (48)

. dIn (kos dlnk
+zkm[-<nza1|g,>ﬁf7)+%<R12|g,>d1“w Rile)]
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The validity of the following formulae can be demonstrated by a stralghtforward calcu-
lation:
<1 |gv> = gv(x) ’ ) (49&)

() = (Rilg) = 5 584@) , (49b)

@Rilg) = — Rilg) = 3(Re[g) = — @‘@;[xg'xx) +22%G7,(2)],  (490)

L _ R, _ L [singm _
tley = - (52| = = |5 - @ |, (494)
where G,(x) is given by the integral
G(x) = 2—1"'_ S cos ys g~zteos O s (50)
and x is defined as B
2 2
2 = o B2, -

In equations (49), primes denote differentiation with respect to the argument x, with
v held constant. With the aid of equations (49), the sums of the terms in the square
brackets of equation (48) are seen to be 1dent1cally zero, whereas the first two terms may
be combined to read

_ dln [o, s VT
Glg) = — 1= 25() 7o [% kot 2 g0) | (52)
Equation (44) can now be written
BV i dln (s, , 5, 2)
@) = = 5= o F @D = = Do) T (B ks et (53)
where F,(x) is the “reduction factor” found by Lin and Shu (1966):
' 1 — 2 )
5,(@) = x [1 sin vr G (x )] (54)
whereas D,(x) is the function
D) = = (1= ) Z 640 /5. = S0 15, (55)

For values of » of interest for the density-wave theory, F,(x) can be regarded as a
positive definite function for real »% Thus, in the lowest asymptotic approximation for
large |kw|, the maxima of the surface-density response correspond with the minima
of the gravitational potential only in the regions where »?* < 1. This result, together
with that of potential theory (see § IT), means that spiral density waves can be seli-
sustained only within the principal range.?

* IV. SELF-SUSTAINED SPIRAL DENSITY WAVES

The properties of self-consistent density waves will now be studied. Apart from the
Jeans instability, we shall be primarily interested in neutrally stable waves. This proves

3 In what follows, we use the term ‘“self-sustained” to mean that the surface-density response is
locally consistent with that required to support the spiral gravitational field. The terminology does not
imply an ability of a wave packet to persist indefinitely in spite of the propagation of the group.
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sufficient to regard »? as being purely real. If we now equate the real and imaginary
parts of the right-hand sides of equations (11) and (53), we obtain

k )
'I—i:'—l (1 — ) = 3:v(x) ’ (56a)
1 d1n (wd?) _ o dln [J_’fl F,
2 dlne  Tdlnolk 1 —2
where kr is defined by

s,o,mAz] , (56b)

K2

B 27Go, ’

kr (87

v
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Fic. 1.—Dispersion relation for a marginally stable stellar disk. See text for explanation.

Equation (56a) is the dispersion relation reported by Lin and Shu (1966) (see also
Lin 1966) connecting the local wavenumber % to the intrinsic dimensionless frequency ».
It is convenient to refer to the wavelength rather than to the wavenumber. We define
the local wavelength X and Toomre’s scale length Ar by

2r _ 4n°Go,

2
>\=—k’—', Ap = or o= 0 | (58)

kT K
For convenience in the description of propagating waves, we have deviated from the
normal practice by assigning to N the same sign as k.

For a marginally stable disk (see § IVb), »? can only be nonnegative, and the disper-
sion equation (56a) leads to the relationship between » and A/Ar shown in Figure 1. If
the usual convention of choosing w and m nonnegative is followed, regions of algebra-
ically increasing values of » (generally) correspond to increasing values of @. Negative
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values of A\/A\r correspond to trailing spiral waves; positive, to leading ones. Because of
the implicit assumption of short scale, the solution for the long waves (| \|/Ar > 0.55)
can be regarded only as being suggestive.

The arrows in the diagram indicate the sense of propagation of wavenumber informa-
tion given by Toomre’s (1969) analysis. No wave can propagate outside the region
where —1 < » < 1. However, without a detailed analysis of the WKB]J connection
relations, we are not able to specify the behavior of a wave packet after its arrival at one
of the Lindblad resonances, » = +1. The possibility exists, in the linear theory, for
reflection or absorption.*

Equation (56b) is the corrected version of the relation of Shu (1968) for the variation
of the amplitude of the gravitational potential, after the removal of two algebraic
errors detected by Toomre (private communication). Toomre suspected these errors

A v(x)
B 1.8} °

1.6p
1.4}
1.2}
1.0-
osf -
os} .
o4t

oz}

' L : P— v
-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-02

-04

-06

e —osl A

F16. 2.—The function ®,(x). Labels 4, B, C, D, correspond to those given in Fig. 1. Because ®R,(x)
is an even function of %, these curves show no distinction between leading and trailing waves.

because he felt that the amplitude relation should lead to a conservation relation in-
volving the group velocity. This expectation was subsequently verified in his paper
(Toomre 1969). :

Equation (56a) may be used to simplify equation (56b) to read

dias [8A42®,(x)] = 0, ie., wd®,(x) = constént, (59a)
®@) = 1= 20 = —{1 + 252 [} - (59b)

These relations follow directly from equations (56a) and (56b) independently of the as-
sumption of marginal stability. Plotted in Figure 2 is the function ®,(x) when the rela-
tion between A\/Ar and » is assumed to be that given in Figure 1. Because ®,(x) changes
sign as » changes sign, equation (59a) would seem to imply that waves in the regions
v < 0 are not well coupled to thosein » > 0. '

4 Lin (1969) has suggested, however, that a (partial) conversion of inwardly propagating trailing
waves of short scale into outwardly propagating trailing waves of long scale may also occur, through
nonlinear effects, at the inner Lindblad resonance. Here, the amplitude of the surface density becomes
infinitely large in the linear asymptotic theory.
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The variation in the amplitude of the surface density (relative to the basic surface
density) is obtained from equations (11) and (59a). In the lowest order of approximation,

mod [S,,(w)]/cr, = constant X & V2(\rx)"28,(x) , (60a)
8@ = X|6@[I" = (1 — /5@ RG] (60b)

Plotted in Figure 3 is the function 8,(x) when the dispersion relationship is assumed to
be given again by Figure 1. The large density amplitudes which develop near the particle
resonance have already been attributed by Toomre (1969) to the gravitational ‘“near-

S,

- 130 -
R 20 -
5 110 y
c A
1 1 L 1 1 1 1 il v
-08 -06 ~04 0.2 02 04 06 08

Fic. 3.—The function $,(x). Labels 4, B, C, D correspond to those given in Figs. 1 and 2.

instability”” of a marginally stable disk. On the other hand, as is discussed below, the
large density amplitudes which develop near the Lindblad resonances arise kinematically
because of the propagation of a wave group.

a) The Propagation of the Density of Wave Action

Equation (59a) (or eq. [60a]) is remarkably concise; it would be surprising if no
simple interpretation prevailed. Such an interpretation has been provided by Toomre
(1969). For a menochromatic wave (w = constant), Toomre showed that equation (59a)
can be recovered from physical considerations provided the density of “wave action” @
is propagated radially with the group velocity ¢,:

wc,@ = constant . (61)

The action density @ is defined as the (time-averaged) energy density JC, reckoned by an
observer moving with the wave group, divided by the intrinsic frequency of the wave
(w — mQ): :

G =3/(w — mQ). (62)
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- Kalnajs (private communication) further clarified this interpretation by.demon-
strating that the energy density € and angular momentum density g, referred to an
inertial frame, can be expressed in terms of the action density @ as

C=wd, Jg=ma. (63)

We note that the relation between JC (energy density referred to a frame which rotates
with the local angular velocity @) and € and g is

=C—9g. (64)

This relationship, valid for a wave, is analagous to that, valid for particles, which gives
Jacobi’s integral in terms of the energy and angular momentum. Here, however, we
refer explicitly to a differentially rotating disk.

The conservation of wave action expressed by equation (61), together with equations
(63), now implies the conservation of wave energy and wave angular momentum referred
to an inertial frame: '

wc,& = constant, ®c,g = constant. (65)

The behavior of the density amplitude near the principal Lindblad resonances can now
be easily visualized. For short waves, the group velocity c, tends to zero as the Lindblad
resonances are approached; consequently, the energy density of the wave tends to
“pile up” there. For long waves, the group elocity tends to a finite value as the Lind-
blad resonances are approached, but both the wavenumber and the surface density
tend toward zero.®

b) Stability of the Disturbance

The conservation relations (65) imply that, within the approximation considered,
spiral density waves are neither overstable nor damped. In particular, trailing and lead-
ing waves stand on an equal footing; only the direction of propagation differs. Lin and
Shu (1966) based their argument for the preference of trailing waves on the variation of
various basic parameters with distance from the galactic center, in particular, on the
gradient of the velocity dispersion. Now, it is apparent that the growth (or decay) of
the wave amplitude arises because the disturbance is propagated radially in an in-
homogeneous medium and not because the disturbance is inherently overstable.

With this interpretation, we know of only one instability mechanism locally operative
(in the plane) for a stellar disk whose distribution function is given by the “modified
Schwarzschild distribution.” This is the Jeans instability discussed for a rotating stellar
disk by Toomre (1964). Toomre’s result can be reproduced from the present analysis in
the following manner.

Unstable disturbances with »? negative in equation (56a) can be found if the local
velocity dispersion {cz?)!/? is less than the critical value (cf. Toomre 1964, eq. [65])

(co? )min'’? = (0.2857)2/kr .
If (co?)1/2is less than (ca? )min!’2, the short-scale components of such growing disturbances
are, in principle, capable of generating more random motion until the stability index
_ < 652 >1/2
Q B <652 >minll2
grows equal to (or slightly larger than) unity. At this point all further instabilities are
suppressed.

8 These conclusions are, of course, based on an asymptotic analysis which may need to be modified
by a more careful analysis of the conditions near resonance.
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Whether the Galaxy is everywhere more than marginally stable is a point of some
debate. Julian (1967) is of the opinion that the enhancement by cooperative effects of
the irregular forces provided by massive objects (on the order of 10°-107 solar masses
each) will inevitably drive Q to values substantially higher than unity. Observations in
the plane of the Galaxy show only the “spiral arms’ to possess large mass concentra-
tions. In the density-wave theory, a more or less regular spiral structure does not lead to
appreciable relaxation. Thus, Shu (1968, 1969) argued that the level of stellar velocity
dispersion in the interior of the disk (excluding the nuclear regions, of course) is de-
termined by gravitational instability alone and that the case of marginal stability
Q = 1should apply. In the outer regions where depletion of interstellar gas by star forma-
tion is yet relatively incomplete, the dissipation of turbulent velocities in the inter-
stellar gas may lead to effective values for Q (for the combined star-gas disk) less than
unity. In these regions may still occur the process of gravitational clumping of the
interstellar gas described by Goldreich and Lynden-Bell (1965).

V. CONCLUDING REMARKS

Taken together with Toomre’s (1969) work, the results of Paper I and the present
paper suggest that the origin of spiral structure can, conceivably, be found in the forcing
of the disk by some yet undetermined agency.

Lin (1969) has proposed that gaseous condensations produced by the process of
“gravitational clumping,” aided by the excitation of density ‘“wakes” in the stellar
sheet (Julian and Toomre 1966), may serve as a source for trailing spiral waves which
propagate into the interior. Even though the forcing of the disk originates in the outer
and more rarefied regions, an impression can be made on the interior because the wave
energy density tends to “pile up” in the interior (where the group velocity is small).
Furthermore, because the waves are initiated as nearly corotating disturbances in the
outer parts of the galaxy, pattern speeds characteristic of the material rotation in the
outer parts automatically result. This conclusion is consistent with the findings of Lin,
Séuan, and Shu (1969) from comparisons of the theory with observations of our own

alaxy.

If the forcing comes from the central regions of the galaxy or if the forcing is external
to the galaxy (possibilities which have been discussed by Toomre 1969), the preference
for such values of 2, would be fortuitous. On the other hand, if the excitation of density
waves occurs through corotating disturbances in the outer regions of the galaxy (say,
around 15 kpc for our own Galaxy), the selection of such values is quite natural. A
partial test of these ideas is possible with external galaxies with well-determined rotation
curves and spiral patterns. The test is whether a pattern speed chosen to match the ma-
terial rotation near the “outer edge” of the observed structure yields an accurate, theo-
retically deduced spiral pattern for the interior. At Stony Brook, we are in the process
of making such determinations.

Once again, I am grateful to Professor C. C. Lin for his encouragement and advice
on attacking the problems of spiral structure. Begun at the Harvard College Observatory
and completed at Stony Brook, this work has evolved through many fruitful discussions
with Dr. Alar Toomre and Dr. A. J. Kalnajs. This work was supported in part by the
National Science Foundation.
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