Magnetic properties of high-oxygen pressure prepared \(\text{PrBa}_2\text{Cu}_3\text{O}_{7-y} \) cuprates

Y. H. Lin, B. N. Lin, Y. X. Lin, Y. Y. Hsu, T. I. Hsu, and H. C. Ku

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China

High oxygen pressure annealed \(\text{PrBa}_2\text{Cu}_3\text{O}_{7-y} \) \((y \sim 0)\) cuprates were prepared in order to study the effect of oxygen stoichiometric parameter \(y\) on the unusual \(\text{Pr}/\text{Cu}\) magnetic properties and/or recently reported superconductivity. The oxygen-rich orthorhombic 123-chain phase is highly unstable under high-oxygen pressure synthesis and decomposes completely in 10 bar pressure. For a smaller 2 bar prepared sample a relatively clean phase was preserved with an oxygen parameter \(y = 0.05\), as compared with \(y = 0.11\) from a conventional 1 bar flowing oxygen method. No superconductivity can be detected for all high-oxygen pressure prepared samples. Instead, Mott-insulator behavior with anomalous high \(\text{Pr}\) ordering \(T_N(\text{Pr}) = 19\) K was observed for \(\text{PrBa}_2\text{Cu}_3\text{O}_{6.95}\). Comparison with other \(\text{Pr}/\text{Ba}\) intersubstituted \(\text{Pr}_{1-y}\text{Ba}_y\text{Cu}_3\text{O}_7-y\) cuprates is discussed. © 2001 American Institute of Physics. [DOI: 10.1063/1.1357859]

Superconductivity with \(T_c\) above 90 K were observed for most orthorhombic 123-chain \(\text{RBa}_2\text{Cu}_3\text{O}_7\) or 1212-chain (rewritten as \(\text{CuBa}_2\text{RCu}_2\text{O}_7\)) to emphasis the \(\text{CuO}_2\) bilayers and \(\text{CuO}\) chain rare earth cuprates \((R = \text{Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, or Lu})\), except for insulating \(\text{PrBa}_2\text{Cu}_3\text{O}_7\), where \(\text{Cu}^{2+}\) magnetic moments ordered antiferromagnetically with a Néel temperature \(T_N(\text{Cu})\) above room temperature and \(\text{Pr}^{4+}\) moments ordered with an anomalous high \(T_N(\text{Pr}) \sim 18\) K.\(^1\sim^5\) However, indications of inhomogeneous superconductivity with \(T_N(\text{Pr})\) around 90 K in \(\text{PrBa}_2\text{Cu}_3\text{O}_7\) were reported recently in some thin films, powders, or single crystals.\(^6\sim^7\) These results are in sharp contrast to earlier works and detailed study is thus necessary to clarify this puzzle.\(^8\sim^9\)

In this report, through high-oxygen pressure annealing, we have investigated the high-oxygen content \(\text{PrBa}_2\text{Cu}_3\text{O}_{7-y}\) cuprates \((y \sim 0)\) in order to study the effect of oxygen stoichiometry on the complex interplay among crystal symmetry, unusual \(\text{Pr}\) magnetic property and possible unconventional superconductivity in the \(\text{Pr}-123\) system.

The \(\text{PrBa}_2\text{Cu}_3\text{O}_{7-y}\) samples with nominal composition were synthesized by a standard solid-state reaction method using high-purity \(\text{Pr}_6\text{O}_{11}(99.99\%\)), \(\text{BaCO}_3(99.99\%\)), and \(\text{CuO}(99.99\%\)) powders. Powders were thoroughly mixed and carefully calcined at 870 °C in air for 2 days with several intermediate regrinding. The calcined powder was then pressed into pellets and sintered in flowing Ar at 890 °C for 1 day in order to suppress the formation of unwanted magnetic impurity \(\text{PrBaO}_3\). The as-sintered samples were annealed in flowing \(\text{O}_2\) at 400 °C for 1 day then slowly furnace cooled to room temperature.

To achieve higher oxygen content, samples were further annealed under high-oxygen pressure of 2–10 bar at 400 °C for 1–5 days in a Morris HPS-5015P high pressure furnace. The block diagram for the high-oxygen pressure furnace system is shown in Fig. 1. The oxygen content parameter \(y\) was determined from the standard iodometric titration method.

The powder x-ray diffraction data were obtained with a Rigaku RotaFlex 18 kW rotating anode diffractometer using graphite monochromatized \(\text{Cu} K\alpha\) radiation with a scanning step of 0.02° in 2θ. The electrical resistivity measurements were performed using the standard four-probe method with a Linear Research LR-700 ac (16 Hz) resistance bridge from 5 to 300 K. The low field (10 G) magnetic susceptibility data were obtained through a quantum design \(\mu\)-metal shielded magnetic property measurement system 2 (MPMS 2) superconducting quantum interference device magnetometer from 2 to 300 K.

![FIG. 1. Block diagram of high-oxygen pressure furnace system.](image)
valence for Pr ions. However, an intermediate valence of 3 + δ for Pr is more reasonable considering strong Pr–O wave function hybridization. The orthorhombic lattice parameters for relatively clean PrBa$_2$Cu$_3$O$_6.95$ cuprate are a = 0.3870, b = 0.3926, and c = 1.1706 nm.

For conventional gas flowing (1 bar) prepared PrBa$_2$Cu$_3$O$_{7-\delta}$ samples, oxygen deficiency was generally observed with clean single phase samples. For example, oxygen-deficient orthorhombic 123-chain phase sample PrBa$_2$Cu$_3$O$_{6.89}$ (δ = 0.11, with lattice parameters a = 0.3872, b = 0.3926, and c = 1.1710 nm) was obtained in 400°C flowing oxygen with furnace cool and severe oxygen-deficient tetragonal T phase (space group $P4/mmm$) sample PrBa$_2$Cu$_3$O$_{6.22}$ (δ = 0.78) was obtained in 890°C flowing argon annealing with liquid nitrogen quench. The orthorhombic–tetragonal phase transition boundary was observed around γ = 0.5.

The temperature dependence of electrical resistivity for $pO_2 = 2$ bar prepared PrBa$_2$Cu$_3$O$_{6.95}$ and 1 bar flowing oxygen prepared PrBa$_2$Cu$_3$O$_{6.89}$ were shown collectively in Fig. 3. These two samples show typical Mott-insulator behavior and no superconductivity can be detected down to 2 K. The logarithmic resistivity plotted against $T^{-1/4}$ in Fig. 3 indicates a variable-range hole hopping mechanism in the low temperature regime for these Mott insulators. The slightly higher resistivity for γ = 0.05 with room temperature resistivity p(RT) = 290 mΩ·cm as compared to γ = 0.11 sample [p(RT) = 38 mΩ·cm] may be due to the presence of minor insulating impurity phases of PrBaO$_3$ and CuO as indicated in the powder x-ray diffraction for PrBa$_2$Cu$_3$O$_{6.95}$ (Fig. 2).

The temperature dependence of molar magnetic susceptibility $\chi_m(T)$ and inverse susceptibility $\chi_m^{-1}(T)$ for the PrBa$_2$Cu$_3$O$_{6.95}$ sample was shown in Fig. 4. An unusually high antiferromagnetic Pr ordering temperature T_N(Pr) = 19 K was observed. Below 250 K, the data can be well fitted by a Curie–Weiss law $\chi_m(T) = \chi_0 + C/(T - \theta_p)$ (solid line) with a negative paramagnetic intercept θ_p of −7.98 K. An effective magnetic moment μ_{eff} of 2.65 μ_B per Pr ion can be deduced if the small saturation Cu moments of ~0.5 μ_B is neglected (Cu^{2+} moments order antiferromagnetically above 300 K). The anomalous high Pr ordering with strong Pr–O–Pr superexchange interaction is due to large wave function overlap between extended light rare earth Pr-4f orbital and O-2p_x orbital in the CuO$_2$ bilayers.

The low temperature magnetic susceptibility for PrBa$_2$Cu$_3$O$_{6.95}$ and PrBa$_2$Cu$_3$O$_{6.89}$ were shown collectively in Fig. 5. No superconducting diamagnetic signal can be detected down to 2 K for both high-oxygen content samples. The Curie–Weiss fitting as well as $d\chi_m(T)/dT$ derivative minimum gives a slightly lower T_N(Pr) of 18.5 K for lesser-oxygen content PrBa$_2$Cu$_3$O$_{6.89}$, indicates the sensitive effect of oxygen content on the subtle structural arrangement and the Pr-4f–O-2p_x hybridization. Larger effective magnetic moment μ_{eff} of 2.89 μ_B/Pr for single phase PrBa$_2$Cu$_3$O$_{6.89}$ is deduced as compared with 2.65 μ_B/Pr for PrBa$_2$Cu$_3$O$_{6.95}$ sample with minor Pr$^{4+}$-impurity PrBaO$_2$. Again, an inter-

![FIG. 2. Powder x-ray diffraction pattern for four PrBa$_2$Cu$_3$O$_{7-\delta}$ samples annealed under different oxygen pressure. Impurity phases indicate that the orthorhombic 123 phase is highly unstable under oxygen pressure annealing.](Image)

![FIG. 3. Logarithmic electrical resistivity plotted against $T^{-1/4}$ for two high-oxygen content PrBa$_2$Cu$_3$O$_{6-\gamma}$ samples (γ = 0.05 and 0.11).](Image)

![FIG. 4. Temperature dependence of molar magnetic susceptibility $\chi_m(T)$ and inverse susceptibility $\chi_m^{-1}(T)$ for PrBa$_2$Cu$_3$O$_{6.95}$ sample in a small applied magnetic field of 10 G.](Image)
mediate valence of $3 + \delta$ is more reasonable for 123-chain cuprates considering strong Pr–O wave function hybridization.

Mott-insulating behavior as observed not only on these high-oxygen pressure prepared PrBa$_2$Cu$_3$O$_{7-y}$ ($y \approx 0$) cuprates, but also on the whole PrBa$_2$Cu$_3$O$_{7-y}$ system ($-0.1 < y < 0.9$) as well as on the Pr/Ba intersubstituted Pr$^{3+}$Ba$_{2-x}$Cu$_3$O$_{7-y}$ system ($-0.2 < x < 1$; $-0.4 < y < 1$). These cuprates show that, regardless of the structural phase transitions, a systematic variation of anomalous Pr ordering $T_N(\text{Pr})$ from 19 K down to below 2 K with no superconductivity detected in the whole system.89 The lack of metallic state for all samples studied indicates that the superconducting state, if it exists, may exist only in a very narrow annealed pressure/temperature/time range in order to ensure the specific optimum composition involving oxygen stoichiometry y, oxygen chain structure, Pr/Ba ratio and/or vacancy.

This work was supported by the National Science Council of R.O.C. under Contract Nos. NSC89-2112-M-007-088 and NSC89-2112-M-007-090.