國立清華大學命題紙

98 學年度_奈米工程及微系統_(所)________组碩士班入學考試

- 1. Answer the following questions:
 - a) List the characteristic of an ideal OP Amp. (3%)
 - b) What is the meaning of CMRR? What is the effect of CMRR? (3%)
 - c) What is the channel-length modulation in MOSFET? What is its effect in operating MOSFET? (3%)
 - d) What is the Miller's capacitance? What is its effect for 3-dB frequency? (3%)
 - e) Comparing the voltage gain, input resistance, and output resistance among common-source amplifier, common-gate amplifier, and source-follower amplifier. (3%)
- 2. For the circuit shown in Figure 2, derive the output function $V_o(s)$ in terms of the passive elements and the input voltages. (15%)

Figure 2

3. The diodes in the circuit shown in Figure 3 have the constant voltage drop ($V_D = 0.7 \text{ V}$ with no internal resistance). Determine the output voltage V_o and the currents I_{DI} , I_{D2} , I_{D3} , and I for the inputs $V_I = 4 \text{ V}$ and $V_2 = 1 \text{ V}$. (10%)

Figure 3

國立清華大學命題紙

98 學年度 奈米工程及微系統 (所) 組碩士班入學考試

科目 電子學 科目代碼 1806 共 3 頁第 2 頁 *請在【答案卷卡】內作答

- 4. For the amplifier shown in Figure 4, the internal capacitances of the transistors are neglected.
 - (a) Draw the small-signal equivalent circuit for the amplifier. (3%)
 - (b) Use the small-signal equivalent circuit in part (a) to derive the expression for the input resistance

 R_{in} and the voltage gain v_o / v_{sig} of the circuit. (12%)

Figure 4

- 5. The BJT common-emitter amplifier of Figure 5 includes an emitter degeneration R_{E} .
 - (a) Assume that β is very large, the current source I is ideal, and r_o and r_x are neglected. Derive an expression for the small-signal voltage gain $A(s) = V_o/V_{sig}$ that applies in the midband and the low frequency band. (10%)
 - (b) Use the results of part (a) to find the midband gain A_M and the lower 3-dB frequency f_L . (5%)

Figure 5

清 華 大 學 國 立 題 紙

6. The parameters of the transistor circuit in Figure 6 are $V_{tn} = +0.3 \text{ V}$, $V_{tp} = -0.3 \text{ V}$, $\mu_n C_{ox} = 80 \text{ } \mu\text{A/V}^2$, $\mu_p C_{ox} = 40 \text{ }\mu\text{A/V}^2$, and $\lambda_n = \lambda_p = 0$. Design the circuit (finding the W/L ratio for each transistor) such that $I_O = 16 \mu A$, $I_{REF} = 32 \mu A$, $V_{DS2}(\text{sat}) = 0.2 \text{ V}$, and $V_{GS3} = V_{SG4}$. (15%)

7. Figure 7 shows a differential cascade amplifier with an active load formed by a Wilson current mirror. Assuming all transistors to be identical, show that the differential voltage gain A_d is given by

$$A_d = \frac{1}{3}\beta g_m r_o \quad (15\%)$$

Figure 7