國立清華大學命題紙

計量財務金融學系乙組(財務工程組) 碩士班入學考試 科目_微積分_科目代碼_4604 共_1_頁,第_1_頁 *請在【答案卷卡】作答

Total 100 points.

1. (25 points)

- (1) Let x be a real number. If f(x) is a real-valued function and is continuous at $x = x_0$, state the $\epsilon - \delta$ definition $\lim_{x \to x_0} f(x)$?
- (2) Within the interval $[0, \pi/2]$, what would continuous point(s) be for the function $f(x) = \sin(x)$ when x is a rational number and f(x) = 0 when x is an irrational number?
- (3) Use the $\epsilon \delta$ definition to prove the limit obtained in (c).

2. (30 points)

- Find the derivative of (¹/_y ¹/_{y³}) exp(-^{y²}/₂).
 Use the Fundamental Theorem of Calculus to prove that

$$\int_{x}^{\infty} \exp(-\frac{y^2}{2}) dy \ge (\frac{1}{x} - \frac{1}{x^3}) \exp(-\frac{x^2}{2}) \text{ for } x > 0.$$

(3) For y > x > 0, use $\exp(-\frac{y^2}{2}) \le \frac{y}{x} \exp(-\frac{y^2}{2})$ to prove that

(1)
$$\int_{x}^{\infty} \exp(-\frac{y^2}{2}) dy \le \frac{1}{x} \exp(-\frac{x^2}{2}).$$

3. (25 points)

Given two real-valued functions f and g, we say that f(x) = O(g(x)) as x approaches infinity iff $\lim_{x\to\infty} \left|\frac{f(x)}{g(x)}\right| \leq M$, for some constant M.

- (1) What is the geometric meaning of f(x) = O(g(x))? (Simply draw a graph to illustrate the idea.)
- (2) Prove that $x \ln x = O(x^{1+p})$ for any 0 .
- (3) Use results from Equation (1) to prove that

$$\int_{x}^{\infty} \exp(-\frac{y^{2}}{2}) dy = O(\frac{1}{x} \exp(-\frac{x^{2}}{2})).$$

4. (20 points)

Consider the following one-dimensional differential equation: for $t \geq 0$,

$$\frac{dX(t)}{dt} = \alpha \left(m - X(t) \right) + \sigma \frac{dg(t)}{dt},$$

with the initial condition X(0) = m and g(t) is some differentiable function. Use procedures (1) assume Y(t) = m - X(t) and (2) differentiate $e^{\alpha t}Y(t)$ to solve this equation.